Tp's Bitcoin Calculator - keycloud.es

TP's Bitcoin Calculator - 400 days of service and counting! How profitable is your machine?

submitted by ThePiachu to Bitcoin [link] [comments]

TP's Bitcoin Calculator

Your ultimate Bitcoin calculator. Never again will you have to look at other mining calculators, profitability calculators, power calculators or generation calculators. See how much your Bitcoin mining rig can earn you today!
Difficulty and exchange rate updated about once an hour
submitted by cristianosvaldo to BitcoinMining [link] [comments]

TP's Bitcoin Calculator

Your ultimate Bitcoin calculator. Never again will you have to look at other mining calculators, profitability calculators, power calculators or generation calculators. See how much your Bitcoin mining rig can earn you today!
Difficulty and exchange rate updated about once an hour
submitted by mesutmarachek to BitcoinMining [link] [comments]

Is it possible to make money mining?

I'm plugging some numbers into TP's Bitcoin Calculator to see if upgrading the GPU in my desktop would be worth it, but I'd have to manage 1 million MHash/s to break even in over 400 days with the current difficulty. I guess my question is: do you have to have a super computer to make it work, or is there something I'm not understanding? I could probably do 2 GTX 1080s if I was certain I could get the MHash/s up there.
Thanks for any replies. Happy new year!
submitted by Mahcks to BitcoinBeginners [link] [comments]

Tell me if I correctly answered my own question about mining ...

So like any n00b I want to get into Bitcoin mining but I see CPUs are worthless plus the amount of electricity you'll use will make it a negative net gain etc etc.
But I've been trying to find out given I have space at my work to stack up say 20 generic business desktop PCs running an Intel i5 processor.
The moment I start I should be profitable since I'm not investing a penny into this (Aside from my wasted time at work).
So I find TP's Bitcoin Calculator
I don't know WTF my hash rate is so I look it up here.
I don't know the exact processor so I'll start at the lowest value of 1.8 and round it up to 2. Multiplying by 20 desktops I get 40.
Fast forward the clock. Ring in 2015. Bitch about flying cars not being here yet, then open up my BitCoin wallet to see all that amounted to $5 (Assuming 1 BTC = $1000 USD)
Do I do the math right here?
submitted by Kicker774 to BitcoinMining [link] [comments]

BCH blocks needs to be able to process 6.7 GB blocks in order to collect the same fee as BTC on average while guaranteeing that 0-conf would function during the biggest shopping days

  1. We assume that 0-conf is the method for fast transactions.
  2. For 0-conf to function well transactions must be included in the next transaction almost always. If it doesn’t a fee market is developed making 0-conf to expensive.
  3. In order for BCH to generate as much money to miners through fees as BTC the BCH blocks needs to be 850 times bigger than the BTC blocks, because BTC transactions are 850 times more expensive than BCH. This number was taken from coin.dance just now.
  4. BTC blocks are 1.21MB in size. This number was also just taken from coin.dance just now.
  5. VISA has an average of 1700 tps currently.: In 2011 the peak load for VISA was 11 000 tps. . This is comparing an average from 2019 with a peak in 2011. The peak is likely higher now but these are the numbers I could find. It gives us that the ratio of max/average conservatively estimated is 11000/1700 = 6.5 times higher than the average.
Now we can make a few calculations.
a. the average BCH block size needs to be 1.21MB * 850 = 1028 MB to collect the same fees that BTC is collecting today. b. In order for 0-conf to work reliably the max block size needs to be 6.5 times bigger than the average.
This means that BCH blocks needs to be able to process 1028 * 6.5 = 6.7 GB blocks in order to collect the same fee as BTC on average while guaranteeing that 0-conf would function during the biggest shopping days.
Please note, this is a reasoning about profitability and function. Not about how much transaction capacity that is needed.
submitted by N0tMyRealAcct to btc [link] [comments]

IPFS— The New-gen Tech Revolution, or Another Illusion?

IPFS— The New-gen Tech Revolution, or Another Illusion?
Founded in 2014, after 6 years of R & D as well as its expansion, and after nearly a year of extensive testing and preparation, IPFS (Interplanetary File System) was officially launched on the afternoon of October 15, 2020, UTC time. 12 hours after the mainnet went online, Its token price fluctuated between 50~70 USD/FIL. However, panic and pessimism began to spread between the IPFS community and FIL token holders. Based on the total amount of FIL (2 billion) and the unit price of 50 US dollars estimation, its market value has exceeded 100 billion US dollars, second only to BTC. As such a mega valued IPFS/FIL went online, if there is no enough application to support, the selling pressure after the FIL is gradually unlocked will become huge. According to calculations, on the first day of the mainnet launch, there will be 239,000 FILs to be sold. Assuming that the unit price is 30 USD, the released circulation will be 8 million USD. Assuming the unit price remains unchanged, the market will usher in a similar value on the 10th day. With a release amount of 15 million USD, it is very likely that the corresponding token price can be supported.
IPFS is a network transmission protocol designed to create persistent and distributed storage and sharing of files. In terms of its current active projects and companies, IPFS has added more than 5 billion files, involving multiple industries, and there are also many blockchain companies using this technology. When the IPFS mainnet and its Filecoin goes online, the market value will be based on the applications brought by the IPFS network. After Bitcoin and Ethereum, Filecoin is an upstart in the blockchain industry with a revolutionary technological breakthrough. The market predicts that Filecoin’s market value will surpass Bitcoin. Now let us analyze this project together that was given high hopes:
IPFS major features and disadvantages
The basic application of IPFS, Filecoin’s financial attributes and its incentive mechanism make it a very exciting global collaborative open source project. On this basis, the data of all mankind is stored in the IPFS network, and no one can tamper with it.
This magnificent scene provides at least three values ​​for us:
  1. It creates a storage network service that is license-free and trust-free. This is very important. When you want to access a digital file, you don’t need to get approval or filing from any organization, and strict certification. As for non-centralized trust, it does not require user to trust the supplier that provides storage services, which significantly reduces the cost.
  2. The successful application of IPFS will most likely enable all idle storage resources in the world to be gathered to form a network and be effectively used, and such a network is unprecedented.
  3. Through such a model, network redundancy can be effectively reduced, and the complete separation of data can be achieved. There is no need to store files in a fixed location, only the content needs to be stored in an IPFS and Filecoin network.
However, Plentiful in ideal yet bony in reality. The design flaws of the IPFS project make it difficult to truly apply in the practical environment. Its design flaws mainly focus in the following aspects:
  1. Cannot support hot data storage.
Based on the principle of data timeliness, the higher the frequency of data access, the greater the value of the data possess. At present, IPFS only supports cold data storage scenarios. The lack of support for network transmission makes it impossible to establish a transmission network for hot data, which means the lack of the most valuable support for the network.
  1. The disaster tolerance mechanism is missing.
Disaster tolerance means that when an IT system stops working due to an accident (such as fire, earthquake, etc.), the entire application system can be switched to another location so that the system functions can continue to work normally. IPFS / Filecoin does not provide reliable disaster recovery and recovery mechanisms for storage users. Storage miners arecentrally handling disaster recovery backup and recovery works, resulting in an increase in storage space redundancy by 2–3 times.
  1. The storage performance is reduced by more than 60 times.
The IPFS data verification mechanism is too ideal and complex, and its storage performance is more than 60 times lower than that of a traditional centralized storage system. 1TB files usually need to be verified for more than 10 hours and cannot be stored normally and efficiently.
  1. Centralized technology architecture.
IPFS requires pretty advanced hardware, which leads to a very high threshold for joining its storage network. At present, only specialized storage devices can join the IPFS network as storage nodes. This means that IPFS initially advertised to users that connecting ordinary idle storage and reducing storage costs, has become a flubdub. It is difficult to store the entire network in a centralized structure in a disguised form, which cannot greatly reduce the storage cost of the entire network and ensure the security of the entire network.
  1. Due to the lack of the decentralized governance mechanism, its governance is too despotic, leading to a certain harm to the participated communities.
The above are the main obstacles currently hindering IPFS and Filecoin. The good news is that some of them can be improved and perfected, while some are design mechanism problems and cannot be fixed. Let’s take a look at another project initiated in the tech circle in 2017 — -HOP:
What is HOP
The HOP protocol provides a decentralized and completely anonymous traffic service for people all over the world based on block chain. HOP combines P2P network transmission and block chain technology to establish a block chain micro-payment protocol based on the block chain transmission encryption protocol between P2P network bandwidth contributors and bandwidth users, and merge it into traffic mining. In the mining pool side, the whole protocol is built on the main network, which has Micro Payment and mining functions. In addition, HOP also supports traffic mining of ERC20 in any currency. So far, HOP is the only protocol that combines the above functions and is officially available in commercial application. It can provide terminal nodes for secure access to decentralized networks.
HOP features and comparison with IPFS
HOP and IPFS have certain similarities. The following table is a comparison of the two projects in terms of technology and application characteristics:

https://preview.redd.it/d4klovzngmt51.png?width=1178&format=png&auto=webp&s=f14f0b2290430f6861f6da27f2d1e47ed196b741
Why HOP might be a phenomenal project in the future
Compared with the disadvantages of IPFS which are not supporting for hot data storage, low storage efficiency, low disaster tolerance and the high threshold of providing storage capacity, The advantages of HOP are summarized as follows:
  1. High operating efficiency.
The smart micro-payment system runs payments with unlimited TPS, and the efficiency is 90% higher than Ethereum.
  1. High level of open source. Supports all ERC-20 token access.
  2. Low threshold of participation.
Any participant who has a certain fundamental knowledge of computer science and network technology can set up mining pools and miners.
  1. High scalability.
It can be combined with Starlink satellites, repeaters, sim/esim cards and mobile phones in actual application scenarios to form a next-generation distributed interconnected communication network globally.
At present, most of the participants of HOP are top tier tech specialists, famous investors and politicians with global vision. We believe that projects like HOP, due to the open source and far-sighted technical foundation, which can not only achieve internal self-consistent circulation, but also integrate well with external ecology. Just as water conservancy is invisible, HOP has unlimited inclusiveness and scalability, and has a strong platform-level vitality!
We are looking forward to the accumulation of HOP, bringing a revolution in technology and applications to the blockchain and the practical universe!
submitted by Hayley_HOP to u/Hayley_HOP [link] [comments]

Syscoin Platform’s Great Reddit Scaling Bake-off Proposal

Syscoin Platform’s Great Reddit Scaling Bake-off Proposal

https://preview.redd.it/rqt2dldyg8e51.jpg?width=1044&format=pjpg&auto=webp&s=777ae9d4fbbb54c3540682b72700fc4ba3de0a44
We are excited to participate and present Syscoin Platform's ideal characteristics and capabilities towards a well-rounded Reddit Community Points solution!
Our scaling solution for Reddit Community Points involves 2-way peg interoperability with Ethereum. This will provide a scalable token layer built specifically for speed and high volumes of simple value transfers at a very low cost, while providing sovereign ownership and onchain finality.
Token transfers scale by taking advantage of a globally sorting mempool that provides for probabilistically secure assumptions of “as good as settled”. The opportunity here for token receivers is to have an app-layer interactivity on the speed/security tradeoff (99.9999% assurance within 10 seconds). We call this Z-DAG, and it achieves high-throughput across a mesh network topology presently composed of about 2,000 geographically dispersed full-nodes. Similar to Bitcoin, however, these nodes are incentivized to run full-nodes for the benefit of network security, through a bonded validator scheme. These nodes do not participate in the consensus of transactions or block validation any differently than other nodes and therefore do not degrade the security model of Bitcoin’s validate first then trust, across every node. Each token transfer settles on-chain. The protocol follows Bitcoin core policies so it has adequate code coverage and protocol hardening to be qualified as production quality software. It shares a significant portion of Bitcoin’s own hashpower through merged-mining.
This platform as a whole can serve token microtransactions, larger settlements, and store-of-value in an ideal fashion, providing probabilistic scalability whilst remaining decentralized according to Bitcoin design. It is accessible to ERC-20 via a permissionless and trust-minimized bridge that works in both directions. The bridge and token platform are currently available on the Syscoin mainnet. This has been gaining recent attention for use by loyalty point programs and stablecoins such as Binance USD.

Solutions

Syscoin Foundation identified a few paths for Reddit to leverage this infrastructure, each with trade-offs. The first provides the most cost-savings and scaling benefits at some sacrifice of token autonomy. The second offers more preservation of autonomy with a more narrow scope of cost savings than the first option, but savings even so. The third introduces more complexity than the previous two yet provides the most overall benefits. We consider the third as most viable as it enables Reddit to benefit even while retaining existing smart contract functionality. We will focus on the third option, and include the first two for good measure.
  1. Distribution, burns and user-to-user transfers of Reddit Points are entirely carried out on the Syscoin network. This full-on approach to utilizing the Syscoin network provides the most scalability and transaction cost benefits of these scenarios. The tradeoff here is distribution and subscription handling likely migrating away from smart contracts into the application layer.
  2. The Reddit Community Points ecosystem can continue to use existing smart contracts as they are used today on the Ethereum mainchain. Users migrate a portion of their tokens to Syscoin, the scaling network, to gain much lower fees, scalability, and a proven base layer, without sacrificing sovereign ownership. They would use Syscoin for user-to-user transfers. Tips redeemable in ten seconds or less, a high-throughput relay network, and onchain settlement at a block target of 60 seconds.
  3. Integration between Matic Network and Syscoin Platform - similar to Syscoin’s current integration with Ethereum - will provide Reddit Community Points with EVM scalability (including the Memberships ERC777 operator) on the Matic side, and performant simple value transfers, robust decentralized security, and sovereign store-of-value on the Syscoin side. It’s “the best of both worlds”. The trade-off is more complex interoperability.

Syscoin + Matic Integration

Matic and Blockchain Foundry Inc, the public company formed by the founders of Syscoin, recently entered a partnership for joint research and business development initiatives. This is ideal for all parties as Matic Network and Syscoin Platform provide complementary utility. Syscoin offers characteristics for sovereign ownership and security based on Bitcoin’s time-tested model, and shares a significant portion of Bitcoin’s own hashpower. Syscoin’s focus is on secure and scalable simple value transfers, trust-minimized interoperability, and opt-in regulatory compliance for tokenized assets rather than scalability for smart contract execution. On the other hand, Matic Network can provide scalable EVM for smart contract execution. Reddit Community Points can benefit from both.
Syscoin + Matic integration is actively being explored by both teams, as it is helpful to Reddit, Ethereum, and the industry as a whole.

Proving Performance & Cost Savings

Our POC focuses on 100,000 on-chain settlements of token transfers on the Syscoin Core blockchain. Transfers and burns perform equally with Syscoin. For POCs related to smart contracts (subscriptions, etc), refer to the Matic Network proposal.
On-chain settlement of 100k transactions was accomplished within roughly twelve minutes, well-exceeding Reddit’s expectation of five days. This was performed using six full-nodes operating on compute-optimized AWS c4.2xlarge instances which were geographically distributed (Virginia, London, Sao Paulo Brazil, Oregon, Singapore, Germany). A higher quantity of settlements could be reached within the same time-frame with more broadcasting nodes involved, or using hosts with more resources for faster execution of the process.
Addresses used: 100,014
The demonstration was executed using this tool. The results can be seen in the following blocks:
612722: https://sys1.bcfn.ca/block/6d47796d043bb4c508d29123e6ae81b051f5e0aaef849f253c8f3a6942a022ce
612723: https://sys1.bcfn.ca/block/8e2077f743461b90f80b4bef502f564933a8e04de97972901f3d65cfadcf1faf
612724: https://sys1.bcfn.ca/block/205436d25b1b499fce44c29567c5c807beaca915b83cc9f3c35b0d76dbb11f6e
612725: https://sys1.bcfn.ca/block/776d1b1a0f90f655a6bbdf559ff5072459cbdc5682d7615ff4b78c00babdc237
612726: https://sys1.bcfn.ca/block/de4df0994253742a1ac8ac9eec8d2a8c8b0a6d72c53d6f3caa29bb6c171b0a6b
612727: https://sys1.bcfn.ca/block/e5e167c52a9decb313fbaadf49a5e34cb490f8084f642a850385476d4ef10d70
612728: https://sys1.bcfn.ca/block/ab64d989edc71890e7b5b8491c20e9a27520dc45a5f7c776d3dae79057f59fe7
612729: https://sys1.bcfn.ca/block/5e8b7ecd0e36f99d07e4ea6e135fc952bf7ec30164ab6f4d1e98b0f2d405df6d
612730: https://sys1.bcfn.ca/block/d395df3d31dde60bbb0bece6bd5b358297da878f0beb96be389e5f0e043580a3
It is important to note that this POC is not focused on Z-DAG. The performance of Z-DAG has been benchmarked within realistic network conditions: Whiteblock’s audit is publicly available. Network latency tests showed an average TPS around 15k with burst capacity up to 61k. Zero-latency control group exhibited ~150k TPS. Mainnet testing of the Z-DAG network is achievable and will require further coordination and additional resources.
Even further optimizations are expected in the upcoming Syscoin Core release which will implement a UTXO model for our token layer bringing further efficiency as well as open the door to additional scaling technology currently under research by our team and academic partners. At present our token layer is account-based, similar to Ethereum. Opt-in compliance structures will also be introduced soon which will offer some positive performance characteristics as well. It makes the most sense to implement these optimizations before performing another benchmark for Z-DAG, especially on the mainnet considering the resources required to stress-test this network.

Cost Savings

Total cost for these 100k transactions: $0.63 USD
See the live fee comparison for savings estimation between transactions on Ethereum and Syscoin. Below is a snapshot at time of writing:
ETH price: $318.55 ETH gas price: 55.00 Gwei ($0.37)
Syscoin price: $0.11
Snapshot of live fee comparison chart
Z-DAG provides a more efficient fee-market. A typical Z-DAG transaction costs 0.0000582 SYS. Tokens can be safely redeemed/re-spent within seconds or allowed to settle on-chain beforehand. The costs should remain about this low for microtransactions.
Syscoin will achieve further reduction of fees and even greater scalability with offchain payment channels for assets, with Z-DAG as a resilience fallback. New payment channel technology is one of the topics under research by the Syscoin development team with our academic partners at TU Delft. In line with the calculation in the Lightning Networks white paper, payment channels using assets with Syscoin Core will bring theoretical capacity for each person on Earth (7.8 billion) to have five on-chain transactions per year, per person, without requiring anyone to enter a fee market (aka “wait for a block”). This exceeds the minimum LN expectation of two transactions per person, per year; one to exist on-chain and one to settle aggregated value.

Tools, Infrastructure & Documentation

Syscoin Bridge

Mainnet Demonstration of Syscoin Bridge with the Basic Attention Token ERC-20
A two-way blockchain interoperability system that uses Simple Payment Verification to enable:
  • Any Standard ERC-20 token to be moved from Ethereum to the Syscoin blockchain as a Syscoin Platform Token (SPT), and back to Ethereum
  • Any SPT to be moved from Syscoin to the Ethereum blockchain as an ERC-20 token, and back to Syscoin

Benefits

  • Permissionless
  • No counterparties involved
  • No trading mechanisms involved
  • No third-party liquidity providers required
  • Cross-chain Fractional Supply - 2-way peg - Token supply maintained globally
  • ERC-20s gain vastly improved transactionality with the Syscoin Token Platform, along with the security of bitcoin-core-compliant PoW.
  • SPTs gain access to all the tooling, applications and capabilities of Ethereum for ERC-20, including smart contracts.
https://preview.redd.it/l8t2m8ldh8e51.png?width=1180&format=png&auto=webp&s=b0a955a0181746dc79aff718bd0bf607d3c3aa23
https://preview.redd.it/26htnxzfh8e51.png?width=1180&format=png&auto=webp&s=d0383d3c2ee836c9f60b57eca35542e9545f741d

Source code

https://github.com/syscoin/?q=sysethereum
Main Subprojects

API

Tools to simplify using Syscoin Bridge as a service with dapps and wallets will be released some time after implementation of Syscoin Core 4.2. These will be based upon the same processes which are automated in the current live Sysethereum Dapp that is functioning with the Syscoin mainnet.

Documentation

Syscoin Bridge & How it Works (description and process flow)
Superblock Validation Battles
HOWTO: Provision the Bridge for your ERC-20
HOWTO: Setup an Agent
Developer & User Diligence

Trade-off

The Syscoin Ethereum Bridge is secured by Agent nodes participating in a decentralized and incentivized model that involves roles of Superblock challengers and submitters. This model is open to participation. The benefits here are trust-minimization, permissionless-ness, and potentially less legal/regulatory red-tape than interop mechanisms that involve liquidity providers and/or trading mechanisms.
The trade-off is that due to the decentralized nature there are cross-chain settlement times of one hour to cross from Ethereum to Syscoin, and three hours to cross from Syscoin to Ethereum. We are exploring ways to reduce this time while maintaining decentralization via zkp. Even so, an “instant bridge” experience could be provided by means of a third-party liquidity mechanism. That option exists but is not required for bridge functionality today. Typically bridges are used with batch value, not with high frequencies of smaller values, and generally it is advantageous to keep some value on both chains for maximum availability of utility. Even so, the cross-chain settlement time is good to mention here.

Cost

Ethereum -> Syscoin: Matic or Ethereum transaction fee for bridge contract interaction, negligible Syscoin transaction fee for minting tokens
Syscoin -> Ethereum: Negligible Syscoin transaction fee for burning tokens, 0.01% transaction fee paid to Bridge Agent in the form of the ERC-20, Matic or Ethereum transaction fee for contract interaction.

Z-DAG

Zero-Confirmation Directed Acyclic Graph is an instant settlement protocol that is used as a complementary system to proof-of-work (PoW) in the confirmation of Syscoin service transactions. In essence, a Z-DAG is simply a directed acyclic graph (DAG) where validating nodes verify the sequential ordering of transactions that are received in their memory pools. Z-DAG is used by the validating nodes across the network to ensure that there is absolute consensus on the ordering of transactions and no balances are overflowed (no double-spends).

Benefits

  • Unique fee-market that is more efficient for microtransaction redemption and settlement
  • Uses decentralized means to enable tokens with value transfer scalability that is comparable or exceeds that of credit card networks
  • Provides high throughput and secure fulfillment even if blocks are full
  • Probabilistic and interactive
  • 99.9999% security assurance within 10 seconds
  • Can serve payment channels as a resilience fallback that is faster and lower-cost than falling-back directly to a blockchain
  • Each Z-DAG transaction also settles onchain through Syscoin Core at 60-second block target using SHA-256 Proof of Work consensus
https://preview.redd.it/pgbx84jih8e51.png?width=1614&format=png&auto=webp&s=5f631d42a33dc698365eb8dd184b6d442def6640

Source code

https://github.com/syscoin/syscoin

API

Syscoin-js provides tooling for all Syscoin Core RPCs including interactivity with Z-DAG.

Documentation

Z-DAG White Paper
Useful read: An in-depth Z-DAG discussion between Syscoin Core developer Jag Sidhu and Brave Software Research Engineer Gonçalo Pestana

Trade-off

Z-DAG enables the ideal speed/security tradeoff to be determined per use-case in the application layer. It minimizes the sacrifice required to accept and redeem fast transfers/payments while providing more-than-ample security for microtransactions. This is supported on the premise that a Reddit user receiving points does need security yet generally doesn’t want nor need to wait for the same level of security as a nation-state settling an international trade debt. In any case, each Z-DAG transaction settles onchain at a block target of 60 seconds.

Syscoin Specs

Syscoin 3.0 White Paper
(4.0 white paper is pending. For improved scalability and less blockchain bloat, some features of v3 no longer exist in current v4: Specifically Marketplace Offers, Aliases, Escrow, Certificates, Pruning, Encrypted Messaging)
  • 16MB block bandwidth per minute assuming segwit witness carrying transactions, and transactions ~200 bytes on average
  • SHA256 merge mined with Bitcoin
  • UTXO asset layer, with base Syscoin layer sharing identical security policies as Bitcoin Core
  • Z-DAG on asset layer, bridge to Ethereum on asset layer
  • On-chain scaling with prospect of enabling enterprise grade reliable trustless payment processing with on/offchain hybrid solution
  • Focus only on Simple Value Transfers. MVP of blockchain consensus footprint is balances and ownership of them. Everything else can reduce data availability in exchange for scale (Ethereum 2.0 model). We leave that to other designs, we focus on transfers.
  • Future integrations of MAST/Taproot to get more complex value transfers without trading off trustlessness or decentralization.
  • Zero-knowledge Proofs are a cryptographic new frontier. We are dabbling here to generalize the concept of bridging and also verify the state of a chain efficiently. We also apply it in our Digital Identity projects at Blockchain Foundry (a publicly traded company which develops Syscoin softwares for clients). We are also looking to integrate privacy preserving payment channels for off-chain payments through zkSNARK hub & spoke design which does not suffer from the HTLC attack vectors evident on LN. Much of the issues plaguing Lightning Network can be resolved using a zkSNARK design whilst also providing the ability to do a multi-asset payment channel system. Currently we found a showstopper attack (American Call Option) on LN if we were to use multiple-assets. This would not exist in a system such as this.

Wallets

Web3 and mobile wallets are under active development by Blockchain Foundry Inc as WebAssembly applications and expected for release not long after mainnet deployment of Syscoin Core 4.2. Both of these will be multi-coin wallets that support Syscoin, SPTs, Ethereum, and ERC-20 tokens. The Web3 wallet will provide functionality similar to Metamask.
Syscoin Platform and tokens are already integrated with Blockbook. Custom hardware wallet support currently exists via ElectrumSys. First-class HW wallet integration through apps such as Ledger Live will exist after 4.2.
Current supported wallets
Syscoin Spark Desktop
Syscoin-Qt

Explorers

Mainnet: https://sys1.bcfn.ca (Blockbook)
Testnet: https://explorer-testnet.blockchainfoundry.co

Thank you for close consideration of our proposal. We look forward to feedback, and to working with the Reddit community to implement an ideal solution using Syscoin Platform!

submitted by sidhujag to ethereum [link] [comments]

Defi Coins List In Detail

A Detail List Of Defi Coin

Lending

Trading

Payments

Wallets

Interfaces

Infrastructure

Analytics

Education

Podcasts

Newsletters

Communities

submitted by jakkkmotivator to Latest_Defi_News [link] [comments]

Bull market is back… Another wave of hacker attacks starts again?

Bull market is back… Another wave of hacker attacks starts again?

The picture from COINDESK related reports
On Aug. 2, Ethereum Classic Labs (ETC Labs) made an important announcement on ETC blockchain. ETC Labs said due to network attack, Ethereum Classic suffered a reorganization on August 1st. This has been the second attack on the Ethereum Classic Network this year.
Did renting-power cause the problem again?
In this ETC incident, one of the miners mined a large number of blocks offline. When the miner went online, due to its high computing power, and some versions of mining software did not support large-scale blockchain mergers, the consensus failed. Therefore, the entire network was out of sync, which produced an effect similar to a 51% attack. Finally, it caused the reorganization of 3693 blocks, starting at 10904147. The deposit and withdrawal between the exchanges and mining pools had to be suspended for troubleshooting during this period.
Media report shows that the blockchain reorganization may be caused by a miner (or a mining pool) disconnected during mining. Although it has been restored to normal after 15 hours of repair, it does reflect the vulnerability of the Proof of Work (PoW) network: once the computing power of the network is insufficient, the performance of one single mining pool can affect the entire network, which is neither distributed nor secure for the blockchain. Neither does it have efficiency.
At present, most consensus algorithms of blockchains are using PoW, which has been adopted over 10 years. In PoW, each miner solves a hashing problem. The probability to solve the problem successfully is proportional to the ratio of the miner’s hash power to the total hash power of mainnet.
Although PoW has been running for a long time, the attack model against PoW is very straightforward to understand, and has attracted people’s attention for a long time: such an attack, also known as double-spending attack, may happen when an attacker possesses 51% of the overall network hash power. The attacker can roll back any blocks in the blockchain by creating a longer and more difficult chain and as a result, modify the transaction information.
Since hash power can be rented to launch attacks, some top 30 projects have suffered from such attacks. In addition to this interference, the main attack method is through the computing power market such as Nice Hash. Hackers can rent hashpower to facilitate their attacks, which allows the computing power to rise rapidly in a short time and rewrite information. In January of this year, the Ethereum Classic was attacked once, and it was also the case that hackers can migrate computing power from the fiercely competitive Bitcoin and Ethereum, and use it to attack smaller projects, such as ETH Classic.

The picture shows the cost of attacking ETH Classic. It can be seen that it costs only $6,634 to attack ETH Classic for one hour.
The security of one network is no longer limited by whether miners within the main net take more than 51% of the total hash power, rather it is determined by whether the benevolent (non-hackers) miners take more than 51% of the total hash power from the pool of projects that use similar consensus algorithm. For example, the hash power of Ethereum is 176 TH/s and that of Ethereum Classic is 9 TH/s. In this way, if one diverts some hash power from Ethereum (176 TH/s) to Ethereum Classic, then one can easily launch a double-spending attack to Ethereum Classic. The hash power ratio for this attack between the two projects is 9/176 = 5.2%, which is a tiny number.

https://preview.redd.it/qj57vgmgb9f51.png?width=699&format=png&auto=webp&s=39c1efc3645f268dbf1c73e1b373d532d5461006
As one of the top 30 blockchain projects, Ethereum Classic has been attacked several times. Therefore, those small and medium-sized projects with low hash power and up-and-coming future projects are facing great potential risks. This is the reason that many emerging public chain projects abandon PoW and adopt PoS.
Proof of Stake (PoS) can prevent 51% attack but has problems of its own
In addition to PoW consensus, another well-adopted consensus algorithm is Proof of Stake (PoS). The fundamental concept is that the one who holds more tokens has the right to create the blocks. This is similar to shareholders in the stock market. The token holders also have the opportunities to get rewards. The advantages of PoS are: (i) the algorithm avoids wasting energy like that in PoW calculation; and (ii) its design determines that the PoS will not be subjected to 51% hash power attack since the algorithm requires the miner to possess tokens in order to modify the ledger. In this way, 51% attack becomes costly and meaningless.

https://preview.redd.it/rf65o1vhb9f51.png?width=685&format=png&auto=webp&s=9d7a9f9dab6ce823a224e91afa9d116310cf27e1
In terms of disadvantages, nodes face the problem of accessibility. PoS requires a permission to enter the network and nodes cannot enter and exit freely and thus lacks openness. It can easily be forked. In the long run, the algorithm is short of decentralization, and leads to the Matthew effect of accumulated advantages whereby miners with more tokens will receive more rewards and perpetuate the cycle.
More importantly, the current PoS consensus has not been verified for long-term reliability. Whether it can be as stable as the PoW system is yet to be verified. For some of the PoW public chains that are already launched, if they want to switch consensus, they need to do hard fork, which divides communities and carries out a long consensus upgrade and through which Ethereum is undergoing. Is there a safer and better solution?
QuarkChain Provide THE Solution: High TPS Protection + PoSW Consensus
For new-born projects, and some small or medium-sized projects, they all are facing the problem of power attack. For PoW-based chains, there are always some chains with lower hash power than others (ETC vs. ETH, BCH vs BTC), and thus the risk of attack is increased. In addition, the interoperability among the chains, such as cross-chain operation, is also a problem. In response, QuarkChain has designed a series of mechanisms to solve this problem. This can be summed up as a two-layer structure with a calculation power allocation and Proof of Staked Work (PoSW) consensus.
First of all, there is a layer of sharding, which can be considered as some parallel chains. Each sharding chain handles the transactions relatively independently. Such design forms the basis to ensure the performance of the entire system. To avoid security issues caused by the dilution of the hash power, we also have a root chain. The blocks of the root chain do not contain transactions, but are responsible for verifying the transactions of each shard. Relying on the hash power distribution algorithm, the hash power of the root chain will always account for 51% of the net. Each shard, on the other hand, packages their transactions according to their own consensus and transaction models.
Moreover, QuarkChain relies on flexibility that allows each shard to have different consensus and transaction models. Someone who wants to launch a double-spending attack on a shard that is already contained in the root chain must attack the block on the root chain, which requires calling the 51% hash power of the root chain. That is, if there are vertical field projects that open new shards on QuarkChain, even with insufficient hash power, an attacker must first attack the root chain if he or she wants to attack a new shard. The root chain has maintained more than 51% of the network’s hash power, which makes the attack very difficult.

https://preview.redd.it/rxpohs7jb9f51.png?width=674&format=png&auto=webp&s=e2df1307a1753542472f2b6da88e7a4022b30884

As illustrated in the diagram, if the attacker wants to attack the QuarkChain network, one would need to attack the shard and the root chain simultaneously.
PoW has achieved a high level of decentralization and has been verified for its stability for a long time. Combining PoW with the staking capability for PoS would make use of the advantages of both consensus mechanisms. That is what QuarkChain’s PoSW achieves exactly.
PoSW, which is Proof of Staked Work, is exclusively developed by QuarkChain and runs on shards. PoSW allows miners to enjoy the benefits of lower mining difficulty by staking original tokens (currently it’s 20 times lower). Conversely, if someone malicious with a high hash power and does not stake tokens on QuarkChain, he will be punishable by receiving 20 times the difficulty of the hash power, which increases the cost of attack. If the attacker stakes tokens in order to reduce the cost of attack, he/she needs to stake the corresponding amount of tokens, which may cost even more. Thus, the whole network is more secure.
Taking Ethereum Classics (ETC) as an example, if ETC uses the PoSW consensus, if there was another double-spending attack similar to the one in January, the attacker will need at least 110Th/s hash power or 650320 ETC (worth $3.2 million, and 8 TH/s hash power) to create this attack, which is far greater than the cost of the current attack on the network (8Th/s hash power) and revenue (219500 ETC).
Relying on multiple sets of security mechanisms, QuarkChain ensures its own security, while providing security for new shards and small and medium-sized projects. Its high level of flexibility also allows the projects to support different types of ledger models, transaction models, virtual machines, and token economics. Such great degrees of security and flexibility will facilitate the blockchain ecosystem to accelerate growth of innovative blockchain applications.
Learn more about QuarkChain
Website https://www.quarkchain.io
Telegram https://t.me/quarkchainio
Twitter https://twitter.com/Quark_Chain
Medium https://medium.com/quarkchain-official
Reddit https://www.reddit.com/quarkchainio/
Community https://community.quarkchain.io/
submitted by QuarkChain to quarkchainio [link] [comments]

The Retrospect and Prospect of the Crypto Economy——The Development and Evolution of the Consensus Mechanism (Three)

The Retrospect and Prospect of the Crypto Economy——The Development and Evolution of the Consensus Mechanism (Three)

https://preview.redd.it/45wwtygv2rc51.png?width=567&format=png&auto=webp&s=a5f51ea3c620d478231c39e32f198eb64d801897
Foreword
The consensus mechanism is one of the important elements of the blockchain and the core rule of the normal operation of the distributed ledger. It is mainly used to solve the trust problem between people and determine who is responsible for generating new blocks and maintaining the effective unification of the system in the blockchain system. Thus, it has become an everlasting research hot topic in blockchain.
This article starts with the concept and role of the consensus mechanism. First, it enables the reader to have a preliminary understanding of the consensus mechanism as a whole; then starting with the two armies and the Byzantine general problem, the evolution of the consensus mechanism is introduced in the order of the time when the consensus mechanism is proposed; Then, it briefly introduces the current mainstream consensus mechanism from three aspects of concept, working principle and representative project, and compares the advantages and disadvantages of the mainstream consensus mechanism; finally, it gives suggestions on how to choose a consensus mechanism for blockchain projects and pointed out the possibility of the future development of the consensus mechanism.
Contents
First, concept and function of the consensus mechanism
1.1 Concept: The core rules for the normal operation of distributed ledgers
1.2 Role: Solve the trust problem and decide the generation and maintenance of new blocks
1.2.1 Used to solve the trust problem between people
1.2.2 Used to decide who is responsible for generating new blocks and maintaining effective unity in the blockchain system
1.3 Mainstream model of consensus algorithm
Second, the origin of the consensus mechanism
2.1 The two armies and the Byzantine generals
2.1.1 The two armies problem
2.1.2 The Byzantine generals problem
2.2 Development history of consensus mechanism
2.2.1 Classification of consensus mechanism
2.2.2 Development frontier of consensus mechanism
Third, Common Consensus System
Fourth, Selection of consensus mechanism and summary of current situation
4.1 How to choose a consensus mechanism that suits you
4.1.1 Determine whether the final result is important
4.1.2 Determine how fast the application process needs to be
4.1.2 Determining the degree to which the application requires for decentralization
4.1.3 Determine whether the system can be terminated
4.1.4 Select a suitable consensus algorithm after weighing the advantages and disadvantages
4.2 Future development of consensus mechanism
Last lecture review: Chapter 1 Concept and Function of Consensus Mechanism plus Chapter 2 Origin of Consensus Mechanism
Last lecture review: Chapter 3 Common Consensus Mechanisms

Chapter 3 Common Consensus Mechanisms (Part 2)
Figure 6 Summary of relatively mainstream consensus mechanisms

https://preview.redd.it/2yepvjjy2rc51.png?width=567&format=png&auto=webp&s=acaed31fa6106ac2f501fe2cb284f66bb2258a0e
Source: Hasib Anwar, "Consensus Algorithms: The Root Of The Blockchain Technology"
The picture above shows 14 relatively mainstream consensus mechanisms summarized by a geek Hasib Anwar, including PoW (Proof of Work), PoS (Proof of Stake), DPoS (Delegated Proof of Stake), LPoS (Lease Proof of Stake), PoET ( Proof of Elapsed Time), PBFT (Practical Byzantine Fault Tolerance), SBFT (Simple Byzantine Fault Tolerance), DBFT (Delegated Byzantine Fault Tolerance), DAG (Directed Acyclic Graph), Proof-of-Activity (Proof of Activity), Proof-of- Importance (Proof of Importance), Proof-of-Capacity (Proof of Capacity), Proof-of-Burn ( Proof of Burn), Proof-of-Weight (Proof of Weight).
Next, we will mainly introduce and analyze the top ten consensus mechanisms of the current blockchain.
》DBFT
-Concept:
Delegated Byzantine fault tolerance. The improved Byzantine fault-tolerant algorithm makes it suitable for blockchain systems. The system consists of nodes, delegators (who can approve blocks), and speakers (who proposes the next block). It is a consensus algorithm that guarantees fault tolerance implemented inside the NEO blockchain.
-Principle:
In this mechanism, there are two participants: the professional bookkeeper "bookkeeping node" and the ordinary users in the system.
Ordinary users vote based on the proportion of holding stake to determine the bookkeeping node. When a consensus is required, a spokesperson is randomly selected from these bookkeeping nodes to draw up a plan, and then other bookkeeping nodes will vote basing on the Byzantine fault tolerance algorithm.That is, majority principle. If more than 66% of the nodes agree to the spokesperson’ plan, a consensus is reached; otherwise, the spokesperson is re-elected and the voting process is repeated.
-Representative application: Neo, etc.
》PoA
-Concept:
Proof of authority. That is, certified by some accredited accounts, these accredited accounts are called "validators". The software that the verifier runs that supports the verifier to place transactions in blocks.
-Principle:
Three conditions:
  1. The identity must be formally verified on the chain, and the information can be cross-verified in a publicly available domain;
  2. The qualifications must be difficult to obtain, so that the rights of the verification block obtained are precious enough;
  3. The authoritative inspection and procedures must be completely unified.
With PoA, every individual has the right to become a verifier, so there is an incentive to maintain the position of the verifier once acquired. By attaching a reputation to the identity, the verifier can be encouraged to maintain the transaction process. Because the verifier does not want to gain a negative reputation, it will lose its hard-won verifier status.
-Representative applications: VeChain, etc.
》DAG
-Concept:
Directed acyclic graph. Each newly added unit in the DAG is not only added to the long chain block, but added to all the previous blocks, verifying each new unit and confirming its parent unit and the parent unit of the parent unit, and gradually confirming until the genesis unit. As the hash of its parent unit is included in its own unit, the blockchains of all transactions are connected to each other to form a graph-like structure with time.
-Principle:
In the DAG network, each node can be a trader and a validator, because the transaction processing in DAG is done by the transaction node itself. Taking IOTA as an example, IOTA’s Tangle led
ger does not need to pay transaction fees while ensuring high-speed transaction processing. However, it does not mean that the transaction is free, because in this ledger, the initiation of each transaction needs to verify the other two random transactions first, and connect the transaction initiated by itself to these two transactions, so the responsibility that miners on the blockchain bear is distributed to all traders. The DAG method of processing transactions can be called asynchronous processing mode.
Figure 10 The difference between the traditional blockchain structure and the DAG structure

https://preview.redd.it/1xfssxj03rc51.png?width=553&format=png&auto=webp&s=95c382f81943c9a188a89ac6b2dadf64446589e6
-Representative applications: IOTA, etc.
》PoET
-Concept:
Proof of elapsed time. That is, it is usually used in a permissioned blockchain network. It can determine the mining rights of the block holders in the network. The permissioned blockchain network requires any prospective participants to verify their identity before joining. According to the principles of the fair lottery system, each node is equally likely to become the winner.
-Principle:
Each participating node in the network must wait for a randomly selected period, and the first node to complete the set waiting time will get a new block. Each node in the blockchain network will generate a random waiting time and sleep for a set time. The node that wakes up first, that is, the node with the shortest waiting time, wakes up and submits a new block to the blockchain, and then broadcasts the necessary information to the entire peer-to-peer network. The same process will be repeated to find the next block.
Two factors:
  1. Participating nodes will naturally select a random time in nature, rather than deliberately;
  2. The winner did complete the waiting time.
-Representative application: HyperLedger Sawtooth, etc.
》PoSV
-Concept:
Proof of stake velocity. Proposed by Reddcoin, drawing on the concept of "money circulation speed" in economics, it mainly allocates bookkeeping rights based on the coin age of nodes participating in the competition.
-Principle:
PoSV also allocates accounting rights according to the coin age of the nodes participating in the competition, but modifies the coin age calculation formula to a function of exponential decay of growth rate. Taking Reddcoin as an example, Reddcoin sets the half-life of the coin age growth rate to 1 month. Assuming that the unit token can accumulate 1CoinDay coin age on the first day, only 0.5CoinDay coin age can be accumulated on the 31st day, and only 0.25CoinDay coin age can be accumulated on the 61st day, and so on. In this way, the nodes are encouraged to use the token to conduct a transaction after holding the token for a period of time, thereby restarting the calculation of the coin age and increasing the circulation speed of the token in the network.
-Representative applications: Reddcoin, etc.
Table 2 Comparison of the advantages and disadvantages of current mainstream consensus mechanisms

https://preview.redd.it/kb04i7eh3rc51.png?width=1236&format=png&auto=webp&s=42de13bc99afaf258c0a740a6618e2d579b59100
Source: network resources
Chapter 4 Summary of the Selection and Status Quo of Consensus Mechanism
4.1 How to choose a consensus mechanism that suits you
Step 1: Determine whether the final result is important
For some applications, the end result is very important. If you are building a new payment system that can support very small amounts, it is acceptable for the transaction result to change. Similarly, if you are creating a new distributed social network, 100% guarantee that the status is updated immediately is not particularly necessary. On the contrary, if you are creating a new distributed protocol, the final result is critical to the user experience. For example, Bitcoin has a final confirmation time of about 1 hour, Ethereum has a final confirmation time of about 6 minutes, and Tendermint Core only has a final confirmation time of 1 second.
Step 2: Determine how fast the application process needs to be
If you are building a game, is it reasonable to wait 15 seconds before each action? Due to the low block processing time of Ethereum, games built on it will cause poor user experience due to Ethereum's throughput. However, the application for the transfer of housing property rights can be run on Ethereum. Use the Cosmos SDK to build an application that allows developers to freely use Tendermint Core. It has a short block processing time and high throughput, and is capable of processing 10,000 transactions per second. You can reduce the required communication overhead and speed up the application by setting the maximum number of validators for the application.
Step 3: Determine the application's demand for decentralization
Some applications such as games may not require very high censorship resistance as a by-product of decentralization. In theory, does it really matter that the validator can create a cartel in the game and reverse the transaction result for profit? If it is not important, a blockchain such as EOS may be more suitable for your needs because of the fast transaction speed and free fees. However, some applications such as autonomous banks are more powerful and decentralized. Although Ethereum is considered to be decentralized, some supporters claim that Ethereum's mining pool is an important part of centralized platform, although there are actually only 11 validators (mining pools). One of the major benefits of building your own blockchain instead of building on a smart contract platform is that you can customize the way the application completes verification. However, it is difficult to build your own blockchain, so the Cosmos SDK is very useful, you can easily build your own blockchain and customize the degree of decentralization you need.
Step 4: Determine whether the system can be terminated
If you are building a new application similar to a distributed ride-sharing service, then ensuring 24/7 service must be the first priority, even if there are occasional errors in accounting similar to transactions. One of the properties of Tendermint Core is that if there is a disagreement between network validators, the network will suspend operations instead of proceeding erroneous transactions. Applications such as decentralized exchanges require correctness at all costs-if there is a problem, it is far better to suspend trading on the decentralized exchange than there may be trading problems.
Summary: Choose a suitable consensus algorithm after weighing the advantages and disadvantages
All in all, there is no single best consensus algorithm. Each consensus algorithm has its own value and advantages. You need to have your own judgments and choices. However, by understanding the relevant processes of the consensus mechanism, including proposals and agreements, and establishing a framework to consider the types of consensus algorithms that your application may require, you should be able to make wiser decisions.
4.2 Future development of consensus mechanism
The consensus algorithm is one of the core elements of the blockchain. Although there are more than 30 consensus mechanisms listed in the article, there are still many niche consensus mechanisms that may not be discussed. As the blockchain technology is gradually known and accepted by the public, more and more newer and better consensus algorithms may appear in the future, which may be brand-new consensus algorithms, and more should be improvement and optimization version based on the current consensus algorithm.
After 2016 and 2017 years’ fast development, the current consensus algorithm does not have a recognized evaluation standard, but is generally more biased towards fairness and decentralization, as well as some technical related issues, such as energy consumption and scalability , Fault tolerance and security, etc. However, blockchain technology must be combined with requirements and application scenarios, and the consensus mechanism algorithm and incentive mechanism are inseparable. How to customize a suitable consensus mechanism according to the characteristics of your own project and optimize the current consensus mechanism will become the future direction of consensus mechanism development
CelesOS
As the first DPOW financial blockchain operating system, CelesOS adopts consensus mechanism 3.0 to break through the "impossible triangle", which can provide high TPS while also allowing for decentralization. Committed to creating a financial blockchain operating system that embraces supervision, providing services for financial institutions and the development of applications on the supervision chain, and formulating a role and consensus ecological supervision layer agreement for supervision.
The CelesOS team is dedicated to building a bridge between blockchain and regulatory agencies/financial industry. We believe that only blockchain technology that cooperates with regulators will have a real future. We believe in and contribute to achieving this goal.
📷Website
https://www.celesos.com/
📷 Telegram
https://t.me/celeschain
📷 Twitter
https://twitter.com/CelesChain
📷 Reddit
https://www.reddit.com/useCelesOS
📷 Medium
https://medium.com/@celesos
📷 Facebook
https://www.facebook.com/CelesOS1
📷 Youtube
https://www.youtube.com/channel/UC1Xsd8wU957D-R8RQVZPfGA
submitted by CelesOS to u/CelesOS [link] [comments]

Review and Prospect of Crypto Economy-Development and Evolution of Consensus Mechanism (2)

Review and Prospect of Crypto Economy-Development and Evolution of Consensus Mechanism (2)

https://preview.redd.it/a51zsja94db51.png?width=567&format=png&auto=webp&s=99e8080c9e9b1fb5e11cbd70f915f9cb37188f81
Foreword
The consensus mechanism is one of the important elements of the blockchain and the core rule of the normal operation of the distributed ledger. It is mainly used to solve the trust problem between people and determine who is responsible for generating new blocks and maintaining the effective unification of the system in the blockchain system. Thus, it has become an everlasting research hot topic in blockchain.
This article starts with the concept and role of the consensus mechanism. First, it enables the reader to have a preliminary understanding of the consensus mechanism as a whole; then starting with the two armies and the Byzantine general problem, the evolution of the consensus mechanism is introduced in the order of the time when the consensus mechanism is proposed; Then, it briefly introduces the current mainstream consensus mechanism from three aspects of concept, working principle and representative project, and compares the advantages and disadvantages of the mainstream consensus mechanism; finally, it gives suggestions on how to choose a consensus mechanism for blockchain projects and pointed out the possibility of the future development of the consensus mechanism.
Contents
First, concept and function of the consensus mechanism
1.1 Concept: The core rules for the normal operation of distributed ledgers
1.2 Role: Solve the trust problem and decide the generation and maintenance of new blocks
1.2.1 Used to solve the trust problem between people
1.2.2 Used to decide who is responsible for generating new blocks and maintaining effective unity in the blockchain system
1.3 Mainstream model of consensus algorithm
Second, the origin of the consensus mechanism
2.1 The two armies and the Byzantine generals
2.1.1 The two armies problem
2.1.2 The Byzantine generals problem
2.2 Development history of consensus mechanism
2.2.1 Classification of consensus mechanism
2.2.2 Development frontier of consensus mechanism
Third, Common Consensus System
Fourth, Selection of consensus mechanism and summary of current situation
4.1 How to choose a consensus mechanism that suits you
4.1.1 Determine whether the final result is important
4.1.2 Determine how fast the application process needs to be
4.1.2 Determining the degree to which the application requires for decentralization
4.1.3 Determine whether the system can be terminated
4.1.4 Select a suitable consensus algorithm after weighing the advantages and disadvantages
4.2 Future development of consensus mechanism
Last lecture review: Chapter 1 Concept and Function of Consensus Mechanism plus Chapter 2 Origin of Consensus Mechanism
Chapter 3 Common Consensus Mechanisms (Part 1)
Figure 6 Summary of relatively mainstream consensus mechanisms
📷
https://preview.redd.it/9r7q3xra4db51.png?width=567&format=png&auto=webp&s=bae5554a596feaac948fae22dffafee98c4318a7
Source: Hasib Anwar, "Consensus Algorithms: The Root Of The Blockchain Technology"
The picture above shows 14 relatively mainstream consensus mechanisms summarized by a geek Hasib Anwar, including PoW (Proof of Work), PoS (Proof of Stake), DPoS (Delegated Proof of Stake), LPoS (Lease Proof of Stake), PoET ( Proof of Elapsed Time), PBFT (Practical Byzantine Fault Tolerance), SBFT (Simple Byzantine Fault Tolerance), DBFT (Delegated Byzantine Fault Tolerance), DAG (Directed Acyclic Graph), Proof-of-Activity (Proof of Activity), Proof-of- Importance (Proof of Importance), Proof-of-Capacity (Proof of Capacity), Proof-of-Burn ( Proof of Burn), Proof-of-Weight (Proof of Weight).
Next, we will mainly introduce and analyze the top ten consensus mechanisms of the current blockchain.
》POW
-Concept:
Work proof mechanism. That is, the proof of work means that it takes a certain amount of computer time to confirm the work.
-Principle:
Figure 7 PoW work proof principle
📷
https://preview.redd.it/xupacdfc4db51.png?width=554&format=png&auto=webp&s=3b6994641f5890804d93dfed9ecfd29308c8e0cc
The PoW represented by Bitcoin uses the SHA-256 algorithm function, which is a 256-bit hash algorithm in the password hash function family:
Proof of work output = SHA256 (SHA256 (block header));
if (output of proof of work if (output of proof of work >= target value), change the random number, recursive i logic, continue to compare with the target value.
New difficulty value = old difficulty value* (time spent by last 2016 blocks /20160 minutes)
Target value = maximum target value / difficulty value
The maximum target value is a fixed number. If the last 2016 blocks took less than 20160 minutes, then this coefficient will be small, and the target value will be adjusted bigger, if not, the target value will be adjusted smaller. Bitcoin mining difficulty and block generation speed will be inversely proportional to the appropriate adjustment of block generation speed.
-Representative applications: BTC, etc.
》POS
-Concept:
Proof of stake. That is, a mechanism for reaching consensus based on the holding currency. The longer the currency is held, the greater the probability of getting a reward.
-Principle:
PoS implementation algorithm formula: hash(block_header) = Coin age calculation formula: coinage = number of coins * remaining usage time of coins
Among them, coinage means coin age, which means that the older the coin age, the easier it is to get answers. The calculation of the coin age is obtained by multiplying the coins owned by the miner by the remaining usage time of each coin, which also means that the more coins you have, the easier it is to get answers. In this way, pos solves the problem of wasting resources in pow, and miners cannot own 51% coins from the entire network, so it also solves the problem of 51% attacks.
-Representative applications: ETH, etc.
》DPoS
-Concept:
Delegated proof of stake. That is, currency holding investors select super nodes by voting to operate the entire network , similar to the people's congress system.
-Principle:
The DPOS algorithm is divided into two parts. Elect a group of block producers and schedule production.
Election: Only permanent nodes with the right to be elected can be elected, and ultimately only the top N witnesses can be elected. These N individuals must obtain more than 50% of the votes to be successfully elected. In addition, this list will be re-elected at regular intervals.
Scheduled production: Under normal circumstances, block producers take turns to generate a block every 3 seconds. Assuming that no producer misses his order, then the chain they produce is bound to be the longest chain. When a witness produces a block, a block needs to be generated every 2s. If the specified time is exceeded, the current witness will lose the right to produce and the right will be transferred to the next witness. Then the witness is not only unpaid, but also may lose his identity.
-Representative applications: EOS, etc.
》DPoW
-Concept:
Delayed proof of work. A new-generation consensus mechanism based on PoB and DPoS. Miners use their own computing power, through the hash algorithm, and finally prove their work, get the corresponding wood, wood is not tradable. After the wood has accumulated to a certain amount, you can go to the burning site to burn the wood. This can achieve a balance between computing power and mining rights.
-Principle:
In the DPoW-based blockchain, miners are no longer rewarded tokens, but "wood" that can be burned, burning wood. Miners use their own computing power, through the hash algorithm, and finally prove their work, get the corresponding wood, wood is not tradable. After the wood has accumulated to a certain amount, you can go to the burning site to burn the wood. Through a set of algorithms, people who burn more wood or BP or a group of BP can obtain the right to generate blocks in the next event segment, and get rewards (tokens) after successful block generation. Since more than one person may burn wood in a time period, the probability of producing blocks in the next time period is determined by the amount of wood burned by oneself. The more it is burned, the higher the probability of obtaining block rights in the next period.
Two node types: notary node and normal node.
The 64 notary nodes are elected by the stakeholders of the dPoW blockchain, and the notarized confirmed blocks can be added from the dPoW blockchain to the attached PoW blockchain. Once a block is added, the hash value of the block will be added to the Bitcoin transaction signed by 33 notary nodes, and a hash will be created to the dPow block record of the Bitcoin blockchain. This record has been notarized by most notary nodes in the network. In order to avoid wars on mining between notary nodes, and thereby reduce the efficiency of the network, Komodo designed a mining method that uses a polling mechanism. This method has two operating modes. In the "No Notary" (No Notary) mode, all network nodes can participate in mining, which is similar to the traditional PoW consensus mechanism. In the "Notaries Active" mode, network notaries use a significantly reduced network difficulty rate to mine. In the "Notary Public Activation" mode, each notary public is allowed to mine a block with its current difficulty, while other notary public nodes must use 10 times the difficulty of mining, and all normal nodes use 100 times the difficulty of the notary public node.
Figure 8 DPoW operation process without a notary node
📷
https://preview.redd.it/3yuzpemd4db51.png?width=500&format=png&auto=webp&s=f3bc2a1c97b13cb861414d3eb23a312b42ea6547
-Representative applications: CelesOS, Komodo, etc.
CelesOS Research Institute丨DPoW consensus mechanism-combustible mining and voting
》PBFT
-Concept:
Practical Byzantine fault tolerance algorithm. That is, the complexity of the algorithm is reduced from exponential to polynomial level, making the Byzantine fault-tolerant algorithm feasible in practical system applications.
-Principle:
Figure 9 PBFT algorithm principle
📷
https://preview.redd.it/8as7rgre4db51.png?width=567&format=png&auto=webp&s=372be730af428f991375146efedd5315926af1ca
First, the client sends a request to the master node to call the service operation, and then the master node broadcasts other copies of the request. All copies execute the request and send the result back to the client. The client needs to wait for f+1 different replica nodes to return the same result as the final result of the entire operation.
Two qualifications: 1. All nodes must be deterministic. That is to say, the results of the operation must be the same under the same conditions and parameters. 2. All nodes must start from the same status. Under these two limited qualifications, even if there are failed replica nodes, the PBFT algorithm agrees on the total order of execution of all non-failed replica nodes, thereby ensuring security.
-Representative applications: Tendermint Consensus, etc.
Next Lecture: Chapter 3 Common Consensus Mechanisms (Part 2) + Chapter 4 Consensus Mechanism Selection and Status Summary
CelesOS
As the first DPOW financial blockchain operating system, CelesOS adopts consensus mechanism 3.0 to break through the "impossible triangle", which can provide high TPS while also allowing for decentralization. Committed to creating a financial blockchain operating system that embraces supervision, providing services for financial institutions and the development of applications on the supervision chain, and formulating a role and consensus ecological supervision layer agreement for supervision.
The CelesOS team is dedicated to building a bridge between blockchain and regulatory agencies/financial industry. We believe that only blockchain technology that cooperates with regulators will have a real future. We believe in and contribute to achieving this goal.

📷Website
https://www.celesos.com/
📷 Telegram
https://t.me/celeschain
📷 Twitter
https://twitter.com/CelesChain
📷 Reddit
https://www.reddit.com/useCelesOS
📷 Medium
https://medium.com/@celesos
📷 Facebook
https://www.facebook.com/CelesOS1
📷 Youtube
https://www.youtube.com/channel/UC1Xsd8wU957D-R8RQVZPfGA
submitted by CelesOS to u/CelesOS [link] [comments]

CelesOS Research Institute丨DPoW consensus mechanism-combustible mining and voting

CelesOS Research Institute丨DPoW consensus mechanism-combustible mining and voting
The token economy and the blockchain complement each other, while at the same time, the consensus mechanism forms the basis of the blockchain, whom constitutes the basic technical framework of the token economy.
The mainstream blockchain, like Bitcoin, Ethereum, and EOS have all compromised on certain aspects of the "impossible triangle" features.
https://preview.redd.it/8ocq98swpt551.png?width=554&format=png&auto=webp&s=37ab0235c07b450217e22531ad5291d5b4bcbbee
Bitcoin, as a decentralized digital currency, has sacrificed performance to meet the design requirements of decentralization and security, rendering it the target of highest attacking cost among all PoW public chains. The ASIC mining machines updates continually and new versions launch, both can continuously improve the computing power of the entire network.
Ethereum 2.0 will use a proof of stake (PoS) consensus mechanism. On the Ethereum network, money can be transfered and smart contracts can be operated, presenting a more complicated application scenario. However, due to its low performance, Ethereum is more prone to get congested.
EOS, as a blockchain application platform, is often suspected of being centralized. EOS uses a delegated proof of stake (DPoS) consensus mechanism. Having 21 super nodes responsible for bookkeeping and block generation, the EOS main network can handle more than 4,000 TPS now. However, due to its small number of nodes, it’s one of the three major public chains that are most easily questioned by the outside world on the "decentralization" feature.
An inefficient blockchain will only be a game in the laboratory, and an efficient blockchain without decentralization will only be taken advantage of by big players.
New generation consensus algorithm DPoW
Is there any consensus mechanism that can achieve a better balance between decentralization and efficiency, and can give miners incentives to invest in hardware resources? If we separate the two acts of "acquiring accounting rights" and "receiving block rewards", the above dilemma can be solved. By separating the above two, DPoW has finally achieved the effect of balancing efficiency and centralization.

https://preview.redd.it/www3h8swpt551.png?width=731&format=png&auto=webp&s=c0bf49a42751a9501828d0294bc9280f856c441e
Drawing on the design concept and operating experience of the preceding consensus mechanisms, DPoW is a new-generation consensus mechanism formed based on PoB and DPoS.
Before explaining DPoW, it’s necessary to introduce PoB.
PoB (Proof of Burn) is called the burning proof mechanism. (Source: https://en.bitcoin.it/wiki/Proof_of_burn))

https://preview.redd.it/payq2duzpt551.png?width=554&format=png&auto=webp&s=4b8e9181d95d31a8d5b75a7acab27c851a4a3a4d
PoB is a way to vote who has a commitment to the leadership of the network by burning tokens possessed. The greater the number of tokens burned, the higher the probability of gaining network leadership.
PoB is a method of distributed consensus and an alternative method of proof-of-work mechanism. It can also be used to guide a cryptocurrency.

https://preview.redd.it/4lmhs1i1qt551.png?width=554&format=png&auto=webp&s=e8c50b1638d8ec8d8a2dac2e842b50a2979984fb
In the DPoW-based blockchain, the miner's mining reward is no longer a token, but a "wood" that can be burned-burning wood. Through the hash algorithm, miners use their own computing power to get the corresponding non-tradable wood after proving their workload eventually. When the wood has accumulated to a certain amount, it can be burnt in the burning site.
DPoW technical solutions
Voting with computing power is the biggest innovation of the present invention. It uses the proof of work of the PoW algorithm to replace the stakes as votes, yet retains the BFT-DPoS block generation mechanism.
Specific steps are as follow:
  1. POW question acquisition
Obtain the question of proof of work. The proof of work of the present invention is to perform a Hash operation on a PoW problem; the questions is:
target = hash(block_id + account) ^ difficulty 
  1. POW question answering
A mathematical hash operation of a random number (nonce) is performed on the question, and if the hash value obtained is less than a certain value, the question is answered;
Question answering process:
nonce = random ()ret = max() while(ret > target) { if(hash(nonce+account + block_id)< target) { wood = nonce; break; } nonce++; } 
  1. Voting
Voting is to cast the specific answers to the question to the candidate BP. By such, it’s submitted to the blockchain and counted to the blockchain's status database; within an election period, the maximum value of the answer that each voter can calculate is N, and each answer can only be voted to one candidate BP, and the number of votes that can be cast is N.
The information and process that voting requires:
  • Answer to the question
  • Miner account
  • Block id
  • Block
  • Voting objects (candidate BP)
  • Verify that the vote is valid
  • After verification, it will be credited to BP
4. Count the votes
At the end of an election period, votes are counted and sorted top-down according to the number of votes under the name of the candidate BP. The top X candidate BPs are selected and inserted into the BP list, and the block generating order of the selected BP is written to the blockchain status database.
If X is the number of BPs generated by the system, namely a multiple of 3, it will be set in the genesis block and cannot be changed.
  1. Block generation
The DPoW block generation mechanism is the same as BFT-DPoS. The elected BP negotiates a block generation ownership order based on its own network resource status. When each BP node has block generation rights, the block reward is a fixed reward for each effective irreversible block. At the same time, the blocks that have been generated use the BFT signature mechanism. After getting 2/3 BP's signature, the block will become an irreversible block.
DPoW’s advantage in balance
Compared with existing technical solutions, the DPoW consensus protocol has the following feature.
  1. When the stock of burning wood is large, the nodes in the system tend to burn burning wood to vote instead of logging through computing power, which is similar to the DPoS under this situation.
  2. When the stock of burning wood is few, the nodes in this system tend to log to obtain burning wood for voting, which is similar to PoW under this situation, presenting the feature of decentralization. In order to ensure the high-speed operation of the system and attract ticket sources, BP will maintain a stable investment in computer resources to keep the system highly efficient.
Choosing to vote by logging or burning wood depends on the nodes’ own optimal choice, resulting in constant choosing between the two consensus mechanisms of PoW and DPoS. This will make nodes tend to choose PoW when decentralization is needed, and to choose DPoS when efficiency is needed.
For a system, whether it is decentralized does not depend on whether each block needs to be decentralized. The key is whether the system can provide a channel to decentralization and fair competition when needed. As long as the channel is reasonable, the system will be considered decentralized.
By decoupling vote by logging and block generation, they can be done asynchronously to achieve the effects of decentralization and high efficiency.
Learning and updating the preceding practices in blockchain technology, DPoW manages to achieve both decentralization and efficiency, as “having the cake and eating it”.

📷Website
https://www.celesos.com/
📷 Telegram
https://t.me/celeschain
📷 Twitter
https://twitter.com/CelesChain
📷 Reddit
https://www.reddit.com/useCelesOS
📷 Medium
https://medium.com/@celesos
📷 Facebook
https://www.facebook.com/CelesOS1
📷 Youtube
https://www.youtube.com/channel/UC1Xsd8wU957D-R8RQVZPfGA
submitted by CelesOS to u/CelesOS [link] [comments]

Forbes solves the "Impossible Triangle" problem

Forbes solves the

https://preview.redd.it/crbhgda6c0651.png?width=640&format=png&auto=webp&s=522357d06b1f3c893f996dbd3b79aab5461e4dfb
Blockchain has been described as an omnipotent technology since its inception. It is expected to affect all walks of life and even reshape production relations. However, blockchain itself has a technical bottleneck called "Impossible Triangle", which is still far from its potential. The so-called "Impossible Triangle" of blockchain, also known as the "ternary paradox", means that no matter which consensus mechanism is adopted by blockchain network to determine the generation mode of new blocks, it cannot take into account the three requirements of throughput, security and decentralization at the same time.
For example, bitcoin can theoretically guarantee security and decentralization on the basis of large amount of computing power. But the disadvantage is that it is difficult to improve throughput, slow speed and high cost. EOS, which is said to take improving throughput as an important technological breakthrough, adopts the consensus mechanism of dpos, greatly reducing the number of nodes and being criticized for sacrificing the essence of decentralization. Although the "king of ten thousand chains" Ethereum has the partition technology as the solution of capacity expansion, it can't fall down because of the technical difficulty.
Forbes uses "zero knowledge proof" technology, greatly improves throughput without sacrificing decentralization, and solves the "Impossible Triangle" problem that has plagued the blockchain industry for many years.
1、 Zero knowledge proof
First, we introduce the concept of lower zero knowledge proof. Zero knowledge proof, as the name implies, is not only to fully prove that they are the legitimate owners of certain rights and interests, but also not to disclose relevant information - that is to say, the "knowledge" to the outside world is "zero". The certifier proves to the verifier and makes him believe that he knows or has some information, but the proving process cannot disclose any information to the verifier.
Case 1: a wants to prove to B that he has the key of a room. Suppose that the room can only open the lock with the key, and no other method can open it. There are two ways:
① A shows the key to B, and B uses the key to open the lock of the room, so as to prove that a has the correct key of the room.
② B. make sure that there is an object in the room. A opens the door of the room with his own key, and then takes the object out and shows it to B, so as to prove that he does have the key of the room.
The second method belongs to zero knowledge proof. Its advantage is that in the whole process of proof, B can never see the appearance of the key, thus avoiding the leakage of the key.
Case 2: there is a circular corridor. The exit and the entrance are the same, but there is a door that can only be opened with a key somewhere in the middle of the corridor. A needs to prove to B that he has the key to the door. With zero knowledge proof, B looks at a entering the corridor from the entrance and then going out of the corridor from the exit. At this time, B does not get any information about the key, but it can completely prove that a has the key.
https://preview.redd.it/psbzg9ylc0651.png?width=571&format=png&auto=webp&s=6d58835a211e4d391112cf39720f4aaecda869f6
A large number of facts prove that zero knowledge proof is very useful in cryptography. If zero knowledge proof can be used for verification, many problems will be solved effectively. So how does Forbes use zero knowledge proof to improve TPS?
2、 Second floor expansion
It is difficult to solve the "Impossible Triangle" problem if you directly modify the blockchain architecture itself to improve the throughput. After all, the more nodes, it is very difficult to improve the TPS technology on the premise of decentralization. But Forbes thought of the "curve saving the nation" scheme, that is, without changing the blockchain itself, to improve the TPS by setting the second layer architecture.
Here is a case in life:
If the Forbes public chain is regarded as a real-life bank, and the transfer operation is carried out on the Forbes public chain, it is like handling the transfer business in the bank's counter, but the difference is that the bank is centralized and the blockchain is decentralized.
In the case of few people, it's easy for users to handle the transfer business in the bank, but once there are more people, it's easy to form a long queue, which makes the users in the back have a long wait. Blockchain is like a bank. When there are more people in the transfer queue, there will be a block. So to improve the throughput of blockchain is how to improve the speed of bank transfer business.
But the bank is so big. There are so many bank staff (you can compare the bank staff to the nodes of the blockchain). It is very difficult for the bank to improve the speed of handling the transfer business. This makes the people behind the line angry, but they have no choice.
https://preview.redd.it/euxut33zc0651.png?width=658&format=png&auto=webp&s=899292e272be66b1ead3113db0d21fd9d8985dca
Finally, one of the people at the back of the line couldn't bear to wait. He stood up and said, "we can't wait. We have to find ways to improve our efficiency." And they said to him, you are not a banker. What can you do. So, the man said confidently, "let's see my operation and cooperate with me.".
Only the person pulls out a book for bookkeeping, starts from the fifth person in line, records the balance of each person's account after transfer in detail, and then asks each person to confirm that the note book is authorized by hand print. Then after the last person records, he gets an account book for recording the final balance of the owner's account. Although there is no specific transfer record in this account book, it is recorded accurately Record the balance of each person's transfer. Although some people transfer to each other many times, no matter how many times they transfer, people only care about the balance of their final account
After that person's statistics, just in time, the fourth person in line finished the transfer at the bank. Then he walked into the bank with this account book and said that this was the account balance after the fifth person started the transfer of all the people. The bank only needs to change the account balance of these people in the system.
At the first sight of the bank, it's not easy. The staff swiped it and changed all the balances of these accounts at once, so that the bank's handling of transfer business increased by several hundred times.
This is how Forbes is implemented. By setting the second level node, which is called relay, let relay collect the account transfer information of queued users and verify the user's signature. After calculation, integrate the token balance information of the final address into the Merkel tree and submit it to the chain, and then process it at one time.
We call this method of improving the block chain TPS "the second layer expansion".
At first glance, this scheme is perfect, but there are various problems in practical operation. For example:
  1. How can the bank believe that the person with the final account book actually counts the transfer requests of all the queuers?
  2. What if this person, because of personal grudges, intentionally misses the statistics for those who don't like it?
  3. What if this person secretly changes the account balance on the way to the bank?
At this time, zero knowledge proof will be of great use.

https://preview.redd.it/25p5vrb9d0651.png?width=599&format=png&auto=webp&s=9d07cb226d1f6f318703c76c5f4d9000b370145a
3、 Zero knowledge proof + second layer expansion + smart contract
To solve the above problems is actually to solve the problem of trust. The bank is not stupid. It's OK to let the bank send its own staff. Each staff sent by the bank will issue a "work permit" and an open box with a lock before departure. When you count transfers for people in line, the account book is safe, because people will supervise him. When you count the last person, the staff will put the account book into a locked box and close it. In this way, on the way to the bank, the staff can't do evil and modify the account data. After arriving at the bank, the bank only recognizes the "work permit" and confirms that it is its own staff. Without opening the locked box, it can be determined that this person is indeed trustworthy.
It can be seen that in the whole process, the bank gets ZERO account information, but believes that the transfer data counted by this person is safe and reliable, which is zero knowledge proof.
The principle of Forbes technology is exactly the same. The main chain will use the zero knowledge circuit to generate the certificate called proof. When relay counts the transfer information of users, it will finally package and submit the general ledger Merkel tree, and use proof to encrypt. After the main chain sees the encrypted package, it will use proof to decrypt, perform the calculation of modifying the address token balance, and then broadcast to the whole node.
But there is still a problem that hasn't been solved, that is, what should staff do if they intentionally miss the bookkeeping of people who don't look good? Or the staff ask for a tip from the user. If they don't tip, they don't charge. What should we do?
In fact, it's also easy to handle. People who miss the account or are asked for tips will definitely complain to the bank angrily. After the bank checks, they only need to deduct the balance of the staff's account.
Here Forbes will arrange smart contracts on the main chain, and require the added relay to mortgage a sufficient number of GFS on the main chain. If relay misses the user transfer request or intentionally increases the transfer fee, the main chain will deduct the pledge GFS of relay through the smart contract to compensate the user's loss.
See here, congratulations on finally understanding the technical solution of Forbes to improve TPS. Under the support of huge distributed mining pool, Forbes not only has a large number of nodes to provide ultra-high security and decentralization, but also uses zero knowledge proof + second expansion + smart contract to easily increase TPS to more than 10000, which solves the "Impossible Triangle" problem of blockchain.
I think you must have noticed the details of the pledge of GFS by relay. If smart people don't explain, they can predict the future value of GFS from the details.
submitted by forbeschain to u/forbeschain [link] [comments]

Best General RenVM Questions of March 2020

Best General RenVM Questions of March 2020

\These questions are sourced directly from Telegram*

Q: How do I shutdown my Chaosnet Darknode? A: Please follow these directions: https://docs.renproject.io/chaosnet/chaosnet-darknode/untitled-3

Q: Can I run a Chaosnet Darknode and Mainnet Darknode at the same time (on the same computer). A: No, if you want to do that you’ll have to run them on separate computers.

Q: You mentioned DCEP in your latest piece and "12 App Ideas", but it's going to run on a centralized private network. The Bank of England also just released a report on how they're thinking about their CBDC and DLT/centralization, and stress that a DLT could add resilience, but there's also no reason a currency couldn't be more centralized. The Block reported that other central banks (like the EU and Singapore) are considering third-party chains like Corda. Can you comment on which CBDC designs may or may not be compatible with RZL? You previously said "RZL sMPC provides ECDSA signatures because that’s what it is used by Ethereum, Bitcoin, etc. Whatever solution they come up with, will be the solution that RZL has to be upgraded to use (the whole point of RenVM is not to tell other chains how to do things, and still provide interop; this means waiting on them to define their solution and then working with that)." So, what does centralization mean for RZL, and how can we think about compatibility between these designs on the technical side?
A: The topic of centralisation in interoperability comes down to the compounding effect of using multiple networks. Put another way “you’re only as decentralised as your most centralised component”. While there are nuances to this, the core idea rings true.
RenVM can be used to interoperate many different kinds of chains (anything using ECDSA, or naturally supporting lively threshold signatures) is a candidate to be included in RenVM. However, a centralised currency that has been bridged to a decentralised chain is not decentralised. The centralised entity that controls the currency might say “nothing transferred to/from this other chain will be honoured”. That’s a risk that you take with centralised currencies (take a look at the T&Cs for USDC for example).
The benefit of RenVM in these instances is to become a standard. Short-term, RenVM brings interoperability to some core chains. Medium-term, it expands that to other more interesting chains based on community demands. Long-term, it becomes the standard for how to implement interop. For example: you create a new chain and don’t worry about interop explicitly because you know RenVM will have your back. For centralised currencies this is still advantageous, because the issuing entity only has to manage one chain (theirs) but can still get their currency onto other chains/ecosystems.
From a technical perspective, the Darknodes just have to be willing to adopt the chain/currency.

Q: dApps will have their own risk tolerances for centralized assets. Eg USDC was a bigger deal for MakerDAO than Uniswap. If CBDC liquidity were suddenly bridgeable, some dApps would be more eager to adopt it than others - even despite the risks - because they provide native liquidity and can be used to store/hedge in it without cashing it out. My question is more technical as it relates to RenVM as the "Universal Stablecoin Converter". You sound convinced that RenVM can bridge Libra, DCEP, maybe other CBDCs in the future, but I'm skeptical how RenVM works with account-based currencies. (1) Are we even sure of DCEP's underlying design and whether it or other CBDCs even plan to use digital signatures? And (2) wouldn't RenVM need a KYC-approved account to even get an address on these chains? It seems like DCEP would have to go through a Chinese Circle, who would just issue an ERC20.
A: As far as underlying blockchain technology goes (eg the maths of it) I don’t see there being any issues. Until we know more about whether or not KYCd addresses are required (and if they are, how they work), then I can’t specifically comment on that. However, it is more than possible not to require RenVM to be KYCd (just like you can’t “KYC Ethereum”) and instead move that requirement to addresses on the host blockchain (eg KYC Ethereum addresses for receiving the cross-chain asset). Whether this happens or not would ultimately be up to whether the issuer wanted interoperability to be possible.

Q: In that scenario, how would RenVM even receive the funds to be transferred to the KYC'd Ethereum address? For Alice to send DCEP to Bob's KYC'd Ethereum address, RenVM would need a DCEP address of its own, no?
A: Again, this is impossible to say for certain without knowing the implementation of the origin chain. You could whitelist known RenVM scripts (by looking at their form, like RenVM itself does on Bitcoin). But mostly likely, these systems will have some level of smart contract capabilities and this allows very flexible control. You can just whitelist the smart contract address that RenVM watches for cross-chain events. In origin chains with smart contracts, the smart contract holds the funds (and the keys the smart contract uses to authorise spends are handled as business logic). So there isn’t really a “RenVM public address” in the same sense that there is in Bitcoin.
Q: The disbonding period for Darknodes seem long, what happens if there is a bug?
A: It’s actually good for the network to have a long disbonding period in the face of a bug. If people were able to panic sell, then not only would the bug cause potential security issues, but so too would a mass exodus of Darknodes from the network.
Having time to fix the bug means that Darknodes may as well stick around and continue securing the network as best they can. Because their REN is at stake (as you put it) they’re incentivised to take any of the recommended actions and update their nodes as necessary.
This is also why it’s critical for the Greycore to exist in the early days of the network and why we are rolling out SubZero the way that we are. If such a bug becomes apparent (more likely in the early days than the later days), then the Greycore has a chance to react to it (the specifics of which would of course depend on the specifics of the bug). This becomes harder and slower as the network becomes more decentralised over time.
Not mcap, but the price of bonded Ren. Furthermore, the price will be determined by how much fees darknodes have collected. BTW, loongy could you unveil based on what profits ratio/apr the price will be calculated?
This is up to the Darknodes to governance softly. This means there isn’t a need for an explicit oracle. Darknodes assess L vs R individually and vote to increase fees to drive L down and drive R up. L is driven down by continue fees, whereas R is driven up by minting/burning fees.

Q: How do you think renvm would perform on a day like today when even cexs are stretched. Would the system be able to keep up?
A: This will really depend on the number of shards that RenVM is operating. Shards operate in parallel so more shards = more processing power.

Q: The main limiting factor is the speed of the underlying chain, rather than RenVM?
A: That’s generally the case. Bitcoin peaks at about 7 TPS so as long as we are faster than this, any extra TPS is “wasted”. And you actually don’t want to be faster than you have to be. This lets you drop hardware requirements, and lowering the cost of running a Darknode. This has two nice effects: (a) being an operator generates more profit because costs are lower, and (b) it’s more accessible to more people because it’s a little cheaper to get started (albeit this is minor).

Q: Just getting caught up on governance, but what about: unbonded REN = 1 vote, bonded REN = (1 vote + time_served). That'd be > decentralization of Darknodes alone, an added incentive to be registered, and counter exchanges wielding too much control.
A: You could also have different decaying rates. For example, assuming that REN holders have to vote by “backing” the vote of Darknodes:
Let X be the amount of REN used to voted, backed behind a Darknode and bonded for T time.
Let Y be the amount of time a Darknode has been active for.
Voting power of the Darknode could = Sqrt(Y) * Log(X + T)
Log(1,000,000,000) = ~21 so if you had every REN bonded behind you, your voting power would only be 21x the voting power of other nodes. This would force whales to either run Darknodes for a while and contribute actively to the ecosystem (or lock up their REN for an extended period for addition voting power), and would force exchanges to spread their voting out over many different nodes (giving power back to those running nodes). Obviously the exchange could just run lots of Darknodes, but they would have to do this over a long period of time (not feasible, because people need to be able to withdraw their REN).

Q: Like having superdelegates, i.e, nodes trusted by the community with higher voting power? Maybe like council nodes
A: Well, this is essentially what the Greycore is. Darknodes that have been voted in by the community to act as a secondary signature on everything. (And, interestingly enough, you could vote out all members to remove the core entirely.)

Q: Think the expensive ren is a security feature as well. So, doubt this would impact security potentially? I don’t know. I wouldn’t vote to cut my earnings by 40% for example lol
A: It can lead to centralisation over time though. If 100K REN becomes prohibitively expensive, then you will only see people running Darknodes that can afford a large upfront capital investment. In the mid/long-term this can have adverse effects on the trust in the system. It’s important that people “external” to the system (non-Darknodes) can get themselves into the system. Allowing non-Darknodes to have some governance (even if it’s not overall things) would be critical to this.

Q: That darknode option sounds very interesting although it could get more centralized as the price of 100k Ren rises.For instance dark nodes may not want to vote to lower the threshold from 100k to 50k once Ren gets too expensive.
A: A great point. And one of the reasons it would be ideal to be able to alter those parameters without just the Darknodes voting. Otherwise, you definitely risk long-term centralisation.

Q: BTC is deposited into a native BTC address, but who controls this address (where/how is this address’s private key stored)?
A: This is precisely the magic behind RenVM. RenVM uses an MPC algorithm to generate the controlling private key. No one ever sees this private key, and no one can sign things with it without consensus from everyone else.
submitted by RENProtocol to RenProject [link] [comments]

Celare: “Safe deposit box” for data and assets, protecting privacy and security

Celare: “Safe deposit box” for data and assets, protecting privacy and security

https://preview.redd.it/dlbc4vuw3vn41.jpg?width=960&format=pjpg&auto=webp&s=9553b6c323d285750eab6161ead41d5ab4292125
Privacy security is a growing problem.
On March 19, the sale of 538 million users’ data from Weibo in the form of bitcoin on the Deep Web has raised the issue of privacy security again.
The 36kr analyzed the process for the leak of personal information on Weibo. Hackers upload fake mobile phone address books in batches through the relevant interface of Weibo to match the friend’s account information,then he can match the identity information of the user account successfully.
In fact, with the development of technology, the problem of personal information leakage tends to be more and more dangerous. Even if you take precautions, personal information can become part of the thousands of messages that hackers sell.
With the arrival of the information era, data has become a resource that many businesses compete for, which has given rise to a series of privacy security problems and also spawned a series of gray industrial chains. The privacy of users has gradually become a commodity with a precise price tag. Facebook, Microsoft, Apple, and other global giants have all been exposed for collecting users’ privacy, which still happens.
Data networks can help people to a better life. Still, a series of data privacy problem is to violate the rights and interests of users, such as data leakage by people they know and privacy exposure. The protection of privacy and security has become an urgent issue, but in the centralized system, how to use the data depends on the controller’s preference, and the user never has the dominant right.
Decentralized blockchain is now becoming a better solution to privacy and security problems.
Celare anonymous technology solutions created by blockchain will effectively guarantee the privacy security of users.
https://preview.redd.it/y7mlz6e04vn41.jpg?width=4840&format=pjpg&auto=webp&s=ae3e6ea8e50344d2ffc878010901d59407639ca3
Anonymity is safety
How to ensure the privacy of users? The answer is anonymity.
There are many projects with anonymous technology in the blockchain.
Whether it is the Zero-Knowledge proof mechanism of ZCash, the CoinJoin Scheme of Dash, or the Ring confidential transaction mechanism of XMR, it can ensure the anonymity of transactions to a certain extent and guarantee the users privacy and security.
Celare also uses anonymity to protect users’ privacy. It is the first cross-chain anonymous privacy solution of all digital assets on Polkadot ecology, which is based on blockchain decentralization. Celare has designed a new anonymous mechanism,Non-interactive Zero Knowledge Proof,based on the existing technology. Compared with zero-knowledge proof, the non-interactive system has a more reliable anonymous function, which can completely solve the problem of transaction tracking and protect user privacy.
https://preview.redd.it/2j2lqza44vn41.png?width=1738&format=png&auto=webp&s=84284e2d1d1059790318a61c75da7d4d82973f81
When choosing the zk-SNARK Zero-Knowledge proof curve, Celare chose BLS12–381 curve with a higher security coefficient, which is higher than that of BN128, to guarantee Celare’s top privacy and anonymity.
The method of zero-knowledge proof in practical application is as follows:
When the user registers, the identity information is stored on the server in the form of digital commitment. In the process of identity authentication, the user authenticates himself to the server as a member of the registered user by using the member proof scheme, to avoid the user presenting his identity information to the server every time he logs in.
It is just one fundamental part of Celare’s efforts to protect users’ privacy.
Celare also adds a fully homomorphic encryption scheme in the chain, which can perform arbitrary calculations on the ciphertext without decryption. It is just one of the basics of Celare’s efforts to protect users’ privacy. Full homomorphic encryption can perform arbitrary calculations on the ciphertext without decryption. So the problem of data privacy security can be solved quickly without losing computability.
The comprehensive security technology system is one aspect of Celare protection of user privacy. Besides, Celare uses authorization technology to truly realize that the user is the master of the data, allowing users to control their data freely.
https://preview.redd.it/z7o9ips64vn41.jpg?width=900&format=pjpg&auto=webp&s=ad1cef93b7007b8a55931cc29ff3c986bd33a5f4
Safe and efficient
Safety is only the first step.
What Celare seeks is safety and efficiency.
As is known to all, the three anonymous tokens, Dash, XMR, ZEC, are still used in the field of payment and cannot be further expanded. The reason is that the system does not support smart contracts. And scalability is too low for large-scale commercial use, especially at the data interaction level.
To avoid the limits of anonymous cryptocurrency and better promote the anonymous technology into a broader field, Celare innovative introduced intelligent contracts into its system, which significantly improved Celare efficiency and laid a good foundation for its large-scale commercial use.
Since Celare is a public chain developed based on Polkadot Substrate, it follows Polkadot’s PoS consensus algorithm and contract technology. To maintain the speed and efficiency of data transmission on the chain, Celare will establish a large-scale PoS node network capable of supporting nearly a thousand consensus nodes, infinitely reducing the block out time and ultimately determining the delay time of it.
The high TPS brought by large-scale nodes will provide a technical guarantee for Celare’s widespread application. It also means each transaction of users can be conducted at high speed under the anonymous environment, which not only ensures users’ privacy security but also enables them to enjoy the free experience and indeed promotes the implementation of blockchain technology.
https://preview.redd.it/ds5oqkmc4vn41.jpg?width=800&format=pjpg&auto=webp&s=bbde16cee5e55393984853258240d878d7de3f63
Break the information isolated island, link multiple public chains
Security and efficiency are only part of the Celare blockchain infrastructure. Also, Celare has built a cross-chain technology to interconnect multiple public chains.
For a long time, information cannot be transferred, and digital assets cannot be traded between each public chain, which significantly limits the application space of blockchain. Cross-chain technology came into being, among which Polkadot is the outstanding one.
Celare cross-chain technology also relies on Polkadot. Its internal logic is that the user locks the assets on the original chain and then issues the mapped assets on the target chain. At the same time, the user can apply for a withdrawal on the target chain and unlock the original one.
https://preview.redd.it/hvhnjkqg4vn41.png?width=1406&format=png&auto=webp&s=4d7073000da580b1f897128b4d21f71d49dc4a62
Celare cross-chain technology will further protect users’ privacy and security, which means users can quickly transfer their data and digital assets from other chains to the Celare chain. It helps users consolidate all the data on different chains into a Celare account for easy management. With the help of Celare privacy protection technology, the security of users’ private data is truly guaranteed.
Since the establishment of the project, Celare’s mission has always been to protect users’ privacy and security. Therefore, Celare makes various development and further expansion to better service and privacy and ensure users’ privacy and security.
In the future, Celare will break the barrier of cross-chain assets and truly protect user privacy and anonymity.
Contact Us:
Twitter: @CelareCommunity
Telegram: Celare Community
submitted by Celarecommunity to u/Celarecommunity [link] [comments]

Which are your Top 5 favourite coins out of the Top 100? An analysis.

I am putting together my investment portfolio for 2018 and made a complete summary of the current Top 100. Interestingly, I noticed that all coins can be categorized into 12 markets. Which markets do you think will play the biggest role in the coming year?
Here is a complete overview of all coins in an excel sheet including name, market, TPS, risk profile, time since launch (negative numbers mean that they are launching that many months in the future) and market cap. You can also sort by all of these fields of course. Coins written in bold are the strongest contenders within their market either due to having the best technology or having a small market cap and still excellent technology and potential. https://docs.google.com/spreadsheets/d/1s8PHcNvvjuy848q18py_CGcu8elRGQAUIf86EYh4QZo/edit#gid=0
The 12 markets are
  1. Currency 13 coins
  2. Platform 25 coins
  3. Ecosystem 9 coins
  4. Privacy 10 coins
  5. Currency Exchange Tool 8 coins
  6. Gaming & Gambling 5 coins
  7. Misc 15 coins
  8. Social Network 4 coins
  9. Fee Token 3 coins
  10. Decentralized Data Storage 4 coins
  11. Cloud Computing 3 coins
  12. Stable Coin 2 coins
Before we look at the individual markets, we need to take a look of the overall market and its biggest issue scalability first:
Cryptocurrencies aim to be a decentralized currency that can be used worldwide. Its goal is to replace dollar, Euro, Yen, all FIAT currencies worldwide. The coin that will achieve that will be worth several trillion dollars.
Bitcoin can only process 7 transactions per second (TPS). In order to replace all FIAT, it would need to perform at at least VISA levels, which usually processes around 3,000 TPS, up to 25,000 TPS during peak times and a maximum of 64,000 TPS. That means that this cryptocurrency would need to be able to perform at least several thousand TPS. However, a ground breaking technology should not look at current technology to set a goal for its use, i.e. estimating the number of emails sent in 1990 based on the number of faxes sent wasn’t a good estimate.
For that reason, 10,000 TPS is the absolute baseline for a cryptocurrency that wants to replace FIAT. This brings me to IOTA, which wants to connect all 80 billion IoT devices that are expected to exist by 2025, which constantly communicate with each other, creating 80 billion or more transactions per second. This is the benchmark that cryptocurrencies should be aiming for. Currently, 8 billion devices are connected to the Internet.
With its Lightning network recently launched, Bitcoin is realistically looking at 50,000 possible soon. Other notable cryptocurrencies besides IOTA and Bitcoin are Nano with 7,000 TPS already tested, Dash with several billion TPS possible with Masternodes, Neo, LISK and RHOC with 100,000 TPS by 2020, Ripple with 50,000 TPS, Ethereum with 10,000 with Sharding.
However, it needs to be said that scalability usually goes at the cost of decentralization and security. So, it needs to be seen, which of these technologies can prove itself resilient and performant.
Without further ado, here are the coins of the first market

Market 1 - Currency:

  1. Bitcoin: 1st generation blockchain with currently bad scalability currently, though the implementation of the Lightning Network looks promising and could alleviate most scalability concerns, scalability and high energy use.
  2. Ripple: Centralized currency that might become very successful due to tight involvement with banks and cross-border payments for financial institutions; banks and companies like Western Union and Moneygram (who they are currently working with) as customers customers. However, it seems they are aiming for more decentralization now.https://ripple.com/dev-blog/decentralization-strategy-update/. Has high TPS due to Proof of Correctness algorithm.
  3. Bitcoin Cash: Bitcoin fork with the difference of having an 8 times bigger block size, making it 8 times more scalable than Bitcoin currently. Further block size increases are planned. Only significant difference is bigger block size while big blocks lead to further problems that don't seem to do well beyond a few thousand TPS. Opponents to a block size argue that increasing the block size limit is unimaginative, offers only temporary relief, and damages decentralization by increasing costs of participation. In order to preserve decentralization, system requirements to participate should be kept low. To understand this, consider an extreme example: very big blocks (1GB+) would require data center level resources to validate the blockchain. This would preclude all but the wealthiest individuals from participating.Community seems more open than Bitcoin's though.
  4. Litecoin : Little brother of Bitcoin. Bitcoin fork with different mining algorithm but not much else.Copies everything that Bitcoin does pretty much. Lack of real innovation.
  5. Dash: Dash (Digital Cash) is a fork of Bitcoin and focuses on user ease. It has very fast transactions within seconds, low fees and uses Proof of Service from Masternodes for consensus. They are currently building a system called Evolution which will allow users to send money using usernames and merchants will find it easy to integrate Dash using the API. You could say Dash is trying to be a PayPal of cryptocurrencies. Currently, cryptocurrencies must choose between decentralization, speed, scalability and can pick only 2. With Masternodes, Dash picked speed and scalability at some cost of decentralization, since with Masternodes the voting power is shifted towards Masternodes, which are run by Dash users who own the most Dash.
  6. IOTA: 3rd generation blockchain called Tangle, which has a high scalability, no fees and instant transactions. IOTA aims to be the connective layer between all 80 billion IOT devices that are expected to be connected to the Internet in 2025, possibly creating 80 billion transactions per second or 800 billion TPS, who knows. However, it needs to be seen if the Tangle can keep up with this scalability and iron out its security issues that have not yet been completely resolved.
  7. Nano: 3rd generation blockchain called Block Lattice with high scalability, no fees and instant transactions. Unlike IOTA, Nano only wants to be a payment processor and nothing else, for now at least. With Nano, every user has their own blockchain and has to perform a small amount of computing for each transaction, which makes Nano perform at 300 TPS with no problems and 7,000 TPS have also been tested successfully. Very promising 3rd gen technology and strong focus on only being the fastest currency without trying to be everything.
  8. Decred: As mining operations have grown, Bitcoin’s decision-making process has become more centralized, with the largest mining companies holding large amounts of power over the Bitcoin improvement process. Decred focuses heavily on decentralization with their PoW Pos hybrid governance system to become what Bitcoin was set out to be. They will soon implement the Lightning Network to scale up. While there do not seem to be more differences to Bitcoin besides the novel hybrid consensus algorithm, which Ethereum, Aeternity and Bitcoin Atom are also implementing, the welcoming and positive Decred community and professoinal team add another level of potential to the coin.
  9. Aeternity: We’ve seen recently, that it’s difficult to scale the execution of smart contracts on the blockchain. Crypto Kitties is a great example. Something as simple as creating and trading unique assets on Ethereum bogged the network down when transaction volume soared. Ethereum and Zilliqa address this problem with Sharding. Aeternity focuses on increasing the scalability of smart contracts and dapps by moving smart contracts off-chain. Instead of running on the blockchain, smart contracts on Aeternity run in private state channels between the parties involved in the contracts. State channels are lines of communication between parties in a smart contract. They don’t touch the blockchain unless they need to for adjudication or transfer of value. Because they’re off-chain, state channel contracts can operate much more efficiently. They don’t need to pay the network for every time they compute and can also operate with greater privacy. An important aspect of smart contract and dapp development is access to outside data sources. This could mean checking the weather in London, score of a football game, or price of gold. Oracles provide access to data hosted outside the blockchain. In many blockchain projects, oracles represent a security risk and potential point of failure, since they tend to be singular, centralized data streams. Aeternity proposes decentralizing oracles with their oracle machine. Doing so would make outside data immutable and unchangeable once it reaches Aeternity’s blockchain. Of course, the data source could still be hacked, so Aeternity implements a prediction market where users can bet on the accuracy and honesty of incoming data from various oracles.It also uses prediction markets for various voting and verification purposes within the platform. Aeternity’s network runs on on a hybrid of proof of work and proof of stake. Founded by a long-time crypto-enthusiast and early colleague of Vitalik Buterin, Yanislav Malahov. Promising concept though not product yet
  10. Bitcoin Atom: Atomic Swaps and hybrid consenus. This looks like the only Bitcoin clone that actually is looking to innovate next to Bitcoin Cash.
  11. Dogecoin: Litecoin fork, fantastic community, though lagging behind a bit in technology.
  12. Bitcoin Gold: A bit better security than bitcoin through ASIC resistant algorithm, but that's it. Not that interesting.
  13. Digibyte: Digibyte's PoS blockchain is spread over a 100,000+ servers, phones, computers, and nodes across the globe, aiming for the ultimate level of decentralization. DigiByte rebalances the load between the five mining algorithms by adjusting the difficulty of each so one algorithm doesn’t become dominant. The algorithm's asymmetric difficulty has gained notoriety and been deployed in many other blockchains.DigiByte’s adoption over the past four years has been slow. It’s still a relatively obscure currency compared its competitors. The DigiByte website offers a lot of great marketing copy and buzzwords. However, there’s not much technical information about what they have planned for the future. You could say Digibyte is like Bitcoin, but with shorter blocktimes and a multi-algorithm. However, that's not really a difference big enough to truly set themselves apart from Bitcoin, since these technologies could be implemented by any blockchain without much difficulty. Their decentralization is probably their strongest asset, however, this also change quickly if the currency takes off and big miners decide to go into Digibyte.
  14. Bitcoin Diamond Asic resistant Bitcoin and Copycat

Market 2 - Platform

Most of the cryptos here have smart contracts and allow dapps (Decentralized apps) to be build on their platform and to use their token as an exchange of value between dapp services.
  1. Ethereum: 2nd generation blockchain that allows the use of smart contracts. Bad scalability currently, though this concern could be alleviated by the soon to be implemented Lightning Network aka Plasma and its Sharding concept.
  2. EOS: Promising technology that wants to be able do everything, from smart contracts like Ethereum, scalability similar to Nano with 1000 tx/second + near instant transactions and zero fees, to also wanting to be a platform for dapps. However, EOS doesn't have a product yet and everything is just promises still. Highly overvalued right now. However, there are lots of red flags, have dumped $500 million Ether over the last 2 months and possibly bought back EOS to increase the size of their ICO, which has been going on for over a year and has raised several billion dollars. All in all, their market cap is way too high for that and not even having a product.
  3. Cardano: Similar to Ethereum/EOS, however, only promises made with no delivery yet, highly overrated right now. Interesting concept though. Market cap way too high for not even having a product. Somewhat promising technology.
  4. VeChain: Singapore-based project that’s building a business enterprise platform and inventory tracking system. Examples are verifying genuine luxury goods and food supply chains. Has one of the strongest communities in the crypto world. Most hyped token of all, with merit though.
  5. Neo: Neo is a platform, similar to Eth, but more extensive, allowing dapps and smart contracts, but with a different smart contract gas system, consensus mechanism (PoS vs. dBfT), governance model, fixed vs unfixed supply, expensive contracts vs nearly free contracts, different ideologies for real world adoption. There are currently only 9 nodes, each of which are being run by a company/entity hand selected by the NEO council (most of which are located in china) and are under contract. This means that although the locations of the nodes may differ, ultimately the neo council can bring them down due to their legal contracts. In fact this has been done in the past when the neo council was moving 50 million neo that had been locked up. Also dbft (or neo's implmentation of it) has failed underload causing network outages during major icos. The first step in decentralization is that the NEO Counsel will select trusted nodes (Universities, business partners, etc.) and slowly become less centralized that way. The final step in decentralization will be allowing NEO holders to vote for new nodes, similar to a DPoS system (ARK/EOS/LISK). NEO has a regulation/government friendly ideology. Finally they are trying to work undewith the Chinese government in regards to regulations. If for some reason they wanted it shut down, they could just shut it down.
  6. Stellar: PoS system, similar goals as Ripple, but more of a platform than only a currency. 80% of Stellar are owned by Stellar.org still, making the currency centralized.
  7. Ethereum classic: Original Ethereum that decided not to fork after a hack. The Ethereum that we know is its fork. Uninteresing, because it has a lot of less resources than Ethereum now and a lot less community support.
  8. Ziliqa: Zilliqa is building a new way of sharding. 2400 tpx already tested, 10,000 tps soon possible by being linearly scalable with the number of nodes. That means, the more nodes, the faster the network gets. They are looking at implementing privacy as well.
  9. QTUM: Enables Smart contracts on the Bitcoin blockchain. Useful.
  10. Icon: Korean ethereum. Decentralized application platform that's building communities in partnership with banks, insurance providers, hospitals, and universities. Focused on ID verification and payments. No big differentiators to the other 20 Ethereums, except that is has a product. That is a plus. Maybe cheap alternative to Ethereum.
  11. LISK: Lisk's difference to other BaaS is that side chains are independent to the main chain and have to have their own nodes. Similar to neo whole allows dapps to deploy their blockchain to. However, Lisk is currently somewhat centralized with a small group of members owning more than 50% of the delegated positions. Lisk plans to change the consensus algorithm for that reason in the near future.
  12. Rchain: Similar to Ethereum with smart contract, though much more scalable at an expected 40,000 TPS and possible 100,000 TPS. Not launched yet. No product launched yet, though promising technology. Not overvalued, probably at the right price right now.
  13. ARDR: Similar to Lisk. Ardor is a public blockchain platform that will allow people to utilize the blockchain technology of Nxt through the use of child chains. A child chain, which is a ‘light’ blockchain that can be customized to a certain extent, is designed to allow easy self-deploy for your own blockchain. Nxt claims that users will "not need to worry" about security, as that part is now handled by the main chain (Ardor). This is the chief innovation of Ardor. Ardor was evolved from NXT by the same company. NEM started as a NXT clone.
  14. Ontology: Similar to Neo. Interesting coin
  15. Bytom: Bytom is an interactive protocol of multiple byte assets. Heterogeneous byte-assets (indigenous digital currency, digital assets) that operate in different forms on the Bytom Blockchain and atomic assets (warrants, securities, dividends, bonds, intelligence information, forecasting information and other information that exist in the physical world) can be registered, exchanged, gambled and engaged in other more complicated and contract-based interoperations via Bytom.
  16. Nxt: Similar to Lisk
  17. Stratis: Different to LISK, Stratis will allow businesses and organizations to create their own blockchain according to their own needs, but secured on the parent Stratis chain. Stratis’s simple interface will allow organizations to quickly and easily deploy and/or test blockchain functionality of the Ethereum, BitShares, BitCoin, Lisk and Stratis environements.
  18. Status: Status provides access to all of Ethereum’s decentralized applications (dapps) through an app on your smartphone. It opens the door to mass adoption of Ethereum dapps by targeting the fastest growing computer segment in the world – smartphone users.16. Ark: Fork of Lisk that focuses on a smaller feature set. Ark wallets can only vote for one delegate at a time which forces delegates to compete against each other and makes cartel formations incredibly hard, if not impossible.
  19. Neblio: Similar to Neo, but 30x smaller market cap.
  20. NEM: Is similar to Neo No marketing team, very high market cap for little clarilty what they do.
  21. Bancor: Bancor is a Decentralized Liquidity Network that allows you to hold any Ethereum token and convert it to any other token in the network, with no counter party, at an automatically calculated price, using a simple web wallet.
  22. Dragonchain: The Purpose of DragonChain is to help companies quickly and easily incorporate blockchain into their business applications. Many companies might be interested in making this transition because of the benefits associated with serving clients over a blockchain – increased efficiency and security for transactions, a reduction of costs from eliminating potential fraud and scams, etc.
  23. Skycoin: Transactions with zero fees that take apparently two seconds, unlimited transaction rate, no need for miners and block rewards, low power usage, all of the usual cryptocurrency technical vulnerabilities fixed, a consensus mechanism superior to anything that exists, resistant to all conceivable threats (government censorship, community infighting, cybenucleaconventional warfare, etc). Skycoin has their own consensus algorithm known as Obelisk written and published academically by an early developer of Ethereum. Obelisk is a non-energy intensive consensus algorithm based on a concept called ‘web of trust dynamics’ which is completely different to PoW, PoS, and their derivatives. Skywire, the flagship application of Skycoin, has the ambitious goal of decentralizing the internet at the hardware level and is about to begin the testnet in April. However, this is just one of the many facets of the Skycoin ecosystem. Skywire will not only provide decentralized bandwidth but also storage and computation, completing the holy trinity of commodities essential for the new internet. Skycion a smear campaign launched against it, though they seem legit and reliable. Thus, they are probably undervalued.

Market 3 - Ecosystem

The 3rd market with 11 coins is comprised of ecosystem coins, which aim to strengthen the ease of use within the crypto space through decentralized exchanges, open standards for apps and more
  1. Nebulas: Similar to how Google indexes webpages Nebulas will index blockchain projects, smart contracts & data using the Nebulas rank algorithm that sifts & sorts the data. Developers rewarded NAS to develop & deploy on NAS chain. Nebulas calls this developer incentive protocol – basically rewards are issued based on how often dapp/contract etc. is used, the more the better the rewards and Proof of devotion. Works like DPoS except the best, most economically incentivised developers (Bookkeeppers) get the forging spots. Ensuring brains stay with the project (Cross between PoI & PoS). 2,400 TPS+, DAG used to solve the inter-transaction dependencies in the PEE (Parallel Execution Environment) feature, first crypto Wallet that supports the Lightening Network.
  2. Waves: Decentralized exchange and crowdfunding platform. Let’s companies and projects to issue and manage their own digital coin tokens to raise money.
  3. Salt: Leveraging blockchain assets to secure cash loands. Plans to offer cash loans in traditional currencies, backed by your cryptocurrency assets. Allows lenders worldwide to skip credit checks for easier access to affordable loans.
  4. CHAINLINK: ChainLink is a decentralized oracle service, the first of its kind. Oracles are defined as an ‘agent’ that finds and verifies real-world occurrences and submits this information to a blockchain to be used in smart contracts.With ChainLink, smart contract users can use the network’s oracles to retrieve data from off-chain application program interfaces (APIs), data pools, and other resources and integrate them into the blockchain and smart contracts. Basically, ChainLink takes information that is external to blockchain applications and puts it on-chain. The difference to Aeternity is that Chainlink deploys the smart contracts on the Ethereum blockchain while Aeternity has its own chain.
  5. WTC: Combines blockchain with IoT to create a management system for supply chains Interesting
  6. Ethos unifyies all cryptos. Ethos is building a multi-cryptocurrency phone wallet. The team is also building an investment diversification tool and a social network
  7. Aion: Aion is the token that pays for services on the Aeternity platform.
  8. USDT: is no cryptocurrency really, but a replacement for dollar for trading After months of asking for proof of dollar backing, still no response from Tether.

Market 4 - Privacy

The 4th market are privacy coins. As you might know, Bitcoin is not anonymous. If the IRS or any other party asks an exchange who is the identity behind a specific Bitcoin address, they know who you are and can track back almost all of the Bitcoin transactions you have ever made and all your account balances. Privacy coins aim to prevent exactly that through address fungability, which changes addresses constantly, IP obfuscation and more. There are 2 types of privacy coins, one with completely privacy and one with optional privacy. Optional Privacy coins like Dash and Nav have the advantage of more user friendliness over completely privacy coins such as Monero and Enigma.
  1. Monero: Currently most popular privacy coin, though with a very high market cap. Since their privacy is all on chain, all prior transactions would be deanonymized if their protocol is ever cracked. This requires a quantum computing attack though. PIVX is better in that regard.
  2. Zcash: A decentralized and open-source cryptocurrency that hide the sender, recipient, and value of transactions. Offers users the option to make transactions public later for auditing. Decent privacy coin, though no default privacy
  3. Verge: Calls itself privacy coin without providing private transactions, multiple problems over the last weeks has a toxic community, and way too much hype for what they have.
  4. Bytecoin: First privacy-focused cryptocurrency with anonymous transactions. Bytecoin’s code was later adapted to create Monero, the more well-known anonymous cryptocurrency. Has several scam accusations, 80% pre-mine, bad devs, bad tech
  5. Bitcoin Private: A merge fork of Bitcoin and Zclassic with Zclassic being a fork of Zcash with the difference of a lack of a founders fee required to mine a valid block. This promotes a fair distribution, preventing centralized coin ownership and control. Bitcoin private offers the optional ability to keep the sender, receiver, and amount private in a given transaction. However, this is already offered by several good privacy coins (Monero, PIVX) and Bitcoin private doesn't offer much more beyond this.
  6. Komodo: The Komodo blockchain platform uses Komodo’s open-source cryptocurrency for doing transparent, anonymous, private, and fungible transactions. They are then made ultra-secure using Bitcoin’s blockchain via a Delayed Proof of Work (dPoW) protocol and decentralized crowdfunding (ICO) platform to remove middlemen from project funding. Offers services for startups to create and manage their own Blockchains.
  7. PIVX: As a fork of Dash, PIVX uses an advanced implementation of the Zerocoin protocol to provide it’s privacy. This is a form of zeroknowledge proofs, which allow users to spend ‘Zerocoins’ that have no link back to them. Unlike Zcash u have denominations in PIVX, so they can’t track users by their payment amount being equal to the amount of ‘minted’ coins, because everyone uses the same denominations. PIVX is also implementing Bulletproofs, just like Monero, and this will take care of arguably the biggest weakness of zeroknowledge protocols: the trusted setup.
  8. Zcoin: PoW cryptocurrency. Private financial transactions, enabled by the Zerocoin Protocol. Zcoin is the first full implementation of the Zerocoin Protocol, which allows users to have complete privacy via Zero-Knowledge cryptographic proofs.
  9. Enigma: Monero is to Bitcoin what enigma is to Ethereum. Enigma is for making the data used in smart contracts private. More of a platform for dapps than a currency like Monero. Very promising.
  10. Navcoin: Like bitcoin but with added privacy and pos and 1,170 tps, but only because of very short 30 second block times. Though, privacy is optional, but aims to be more user friendly than Monero. However, doesn't really decide if it wants to be a privacy coin or not. Same as Zcash.Strong technology, non-shady team.
  11. Tenx: Raised 80 million, offers cryptocurrency-linked credit cards that let you spend virtual money in real life. Developing a series of payment platforms to make spending cryptocurrency easier. However, the question is if full privacy coins will be hindered in growth through government regulations and optional privacy coins will become more successful through ease of use and no regulatory hindrance.

Market 5 - Currency Exchange Tool

Due to the sheer number of different cryptocurrencies, exchanging one currency for the other it still cumbersome. Further, merchants don’t want to deal with overcluttered options of accepting cryptocurrencies. This is where exchange tool like Req come in, which allow easy and simple exchange of currencies.
  1. Cryptonex: Fiat and currency exchange between various blockchain services, similar to REQ.
  2. QASH: Qash is used to fuel its liquid platform which will be an exchange that will distribute their liquidity pool. Its product, the Worldbook is a multi-exchange order book that matches crypto to crypto, and crypto to fiat and the reverse across all currencies. E.g., someone is selling Bitcoin is USD on exchange1 not owned by Quoine and someone is buying Bitcoin in EURO on exchange 2 not owned by Quoine. If the forex conversions and crypto conversions match then the trade will go through and the Worldbook will match it, it'll make the sale and the purchase on either exchange and each user will get what they wanted, which means exchanges with lower liquidity if they join the Worldbook will be able to fill orders and take trade fees they otherwise would miss out on.They turned it on to test it a few months ago for an hour or so and their exchange was the top exchange in the world by 4x volume for the day because all Worldbook trades ran through it. Binance wants BNB to be used on their one exchange. Qash wants their QASH token embedded in all of their partners. More info here https://www.reddit.com/CryptoCurrency/comments/8a8lnwhich_are_your_top_5_favourite_coins_out_of_the/dwyjcbb/?context=3
  3. Kyber: network Exchange between cryptocurrencies, similar to REQ. Features automatic coin conversions for payments. Also offers payment tools for developers and a cryptocurrency wallet.
  4. Achain: Building a boundless blockchain world like Req .
  5. Req: Exchange between cryptocurrencies.
  6. Bitshares: Exchange between cryptocurrencies. Noteworthy are the 1.5 second average block times and throughput potential of 100,000 transactions per second with currently 2,400 TPS having been proven. However, bitshares had several Scam accusations in the past.
  7. Loopring: A protocol that will enable higher liquidity between exchanges and personal wallets.
  8. ZRX: Open standard for dapps. Open, permissionless protocol allowing for ERC20 tokens to be traded on the Ethereum blockchain. In 0x protocol, orders are transported off-chain, massively reducing gas costs and eliminating blockchain bloat. Relayers help broadcast orders and collect a fee each time they facilitate a trade. Anyone can build a relayer.

Market 6 - Gaming

With an industry size of $108B worldwide, Gaming is one of the largest markets in the world. For sure, cryptocurrencies will want to have a share of that pie.
  1. Storm: Mobile game currency on a platform with 9 million players.
  2. Fun: A platform for casino operators to host trustless, provably-fair gambling through the use of smart contracts, as well as creating their own implementation of state channels for scalability.
  3. Electroneum: Mobile game currency They have lots of technical problems, such as several 51% attacks
  4. Wax: Marketplace to trade in-game items

Market 7 - Misc

There are various markets being tapped right now. They are all summed up under misc.
  1. OMG: Omise is designed to enable financial services for people without bank accounts. It works worldwide and with both traditional money and cryptocurrencies.
  2. Power ledger: Australian blockchain-based cryptocurrency and energy trading platform that allows for decentralized selling and buying of renewable energy. Unique market and rather untapped market in the crypto space.
  3. Populous: A platform that connects business owners and invoice buyers without middlemen. Invoice sellers get cash flow to fund their business and invoice buyers earn interest. Similar to OMG, small market.
  4. Monacoin: The first Japanese cryptocurrency. Focused on micro-transactions and based on a popular internet meme of a type-written cat. This makes it similar to Dogecoin. Very niche, tiny market.
  5. Revain: Legitimizing reviews via the blockchain. Interesting concept, though market not as big.
  6. Augur: Platform to forecast and make wagers on the outcome of real-world events (AKA decentralized predictions). Uses predictions for a “wisdom of the crowd” search engine. Not launched yet.
  7. Substratum: Revolutionzing hosting industry via per request billing as a decentralized internet hosting system. Uses a global network of private computers to create the free and open internet of the future. Participants earn cryptocurrency. Interesting concept.
  8. Veritaseum: Is supposed to be a peer to peer gateway, though it looks like very much like a scam.
  9. TRON: Tronix is looking to capitalize on ownership of internet data to content creators. However, they plagiarized their white paper, which is a no go. They apologized, so it needs to be seen how they will conduct themselves in the future. Extremely high market cap for not having a product, nor proof of concept.
  10. Syscoin: A cryptocurrency with a decentralized marketplace that lets people buy and sell products directly without third parties. Trying to remove middlemen like eBay and Amazon.
  11. Hshare: Most likely scam because of no code changes, most likely pump and dump scheme, dead community.
  12. BAT: An Ethereum-based token that can be exchanged between content creators, users, and advertisers. Decentralized ad-network that pays based on engagement and attention.
  13. Dent: Decentralizeed exchange of mobile data, enabling mobile data to be marketed, purchased or distributed, so that users can quickly buy or sell data from any user to another one.
  14. Ncash: End to end encrypted Identification system for retailers to better serve their customers .
  15. Factom Secure record-keeping system that allows companies to store their data directly on the Blockchain. The goal is to make records more transparent and trustworthy .

Market 8 - Social network

Web 2.0 is still going strong and Web 3.0 is not going to ignore it. There are several gaming tokens already out there and a few with decent traction already, such as Steem, which is Reddit with voting through money is a very interesting one.
  1. Mithril: As users create content via social media, they will be rewarded for their contribution, the better the contribution, the more they will earn
  2. Steem: Like Reddit, but voting with money. Already launched product and Alexa rank 1,000 Thumbs up.
  3. Rdd: Reddcoin makes the process of sending and receiving money fun and rewarding for everyone. Reddcoin is dedicated to one thing – tipping on social networks as a way to bring cryptocurrency awareness and experience to the general public.
  4. Kin: Token for the platform Kik. Kik has a massive user base of 400 million people. Replacing paying with FIAT with paying with KIN might get this token to mass adoption very quickly.

Market 9 - Fee token

Popular exchanges realized that they can make a few billion dollars more by launching their own token. Owning these tokens gives you a reduction of trading fees. Very handy and BNB (Binance Coin) has been one of the most resilient tokens, which have withstood most market drops over the last weeks and was among the very few coins that could show growth.
  1. BNB: Fee token for Binance
  2. Gas: Not a Fee token for an exchange, but it is a dividend paid out on Neo and a currency that can be used to purchase services for dapps.
  3. Kucoin: Fee token for Kucoin

Market 10 - Decentralized Data Storage

Currently, data storage happens with large companies or data centers that are prone to failure or losing data. Decentralized data storage makes loss of data almost impossible by distributing your files to numerous clients that hold tiny pieces of your data. Remember Torrents? Torrents use a peer-to-peer network. It is similar to that. Many users maintain copies of the same file, when someone wants a copy of that file, they send a request to the peer-to-peer network., users who have the file, known as seeds, send fragments of the file to the requester., he requester receives many fragments from many different seeds, and the torrent software recompiles these fragments to form the original file.
  1. Gbyte: Byteball data is stored and ordered using directed acyclic graph (DAG) rather than blockchain. This allows all users to secure each other's data by referencing earlier data units created by other users, and also removes scalability limits common for blockchains, such as blocksize issue.
  2. Siacoin: Siacoin is decentralized storage platform. Distributes encrypted files to thousands of private users who get paid for renting out their disk space. Anybody with siacoins can rent storage from hosts on Sia. This is accomplish via "smart" storage contracts stored on the Sia blockchain. The smart contract provides a payment to the host only after the host has kept the file for a given amount of time. If the host loses the file, the host does not get paid.
  3. Maidsafecoin: MaidSafe stands for Massive Array of Internet Disks, Secure Access for Everyone.Instead of working with data centers and servers that are common today and are vulnerable to data theft and monitoring, SAFE’s network uses advanced P2P technology to bring together the spare computing capacity of all SAFE users and create a global network. You can think of SAFE as a crowd-sourced internet. All data and applications reside in this network. It’s an autonomous network that automatically sets prices and distributes data and rents out hard drive disk space with a Blockchain-based storage solutions.When you upload a file to the network, such as a photo, it will be broken into pieces, hashed, and encrypted. The data is then randomly distributed across the network. Redundant copies of the data are created as well so that if someone storing your file turns off their computer, you will still have access to your data. And don’t worry, even with pieces of your data on other people’s computers, they won’t be able to read them. You can earn MadeSafeCoins by participating in storing data pieces from the network on your computer and thus earning a Proof of Resource.
  4. Storj: Storj aims to become a cloud storage platform that can’t be censored or monitored, or have downtime. Your files are encrypted, shredded into little pieces called 'shards', and stored in a decentralized network of computers around the globe. No one but you has a complete copy of your file, not even in an encrypted form.

Market 11 - Cloud computing

Obviously, renting computing power, one of the biggest emerging markets as of recent years, e.g. AWS and Digital Ocean, is also a service, which can be bought and managed via the blockchain.
  1. Golem: Allows easy use of Supercomputer in exchange for tokens. People worldwide can rent out their computers to the network and get paid for that service with Golem tokens.
  2. Elf: Allows easy use of Cloud computing in exchange for tokens.

Market 12 - Stablecoin

Last but not least, there are 2 stablecoins that have established themselves within the market. A stable coin is a coin that wants to be independent of the volatility of the crypto markets. This has worked out pretty well for Maker and DGD, accomplished through a carefully diversified currency fund and backing each token by 1g or real gold respectively. DO NOT CONFUSE DGD AND MAKER with their STABLE COINS DGX and DAI. DGD and MAKER are volatile, because they are the companies of DGX and DAI. DGX and DAI are the stable coins.
  1. DGD: Platform of the Stablecoin DGX. Every DGX coin is backed by 1g of gold and make use proof of asset consensus.
  2. Maker: Platform of the Stablecoin DAI that doesn't vary much in price through widespread and smart diversification of assets.
EDIT: Added a risk factor from 0 to 10. The baseline is 2 for any crypto. Significant scandals, mishaps, shady practices, questionable technology, increase the risk factor. Not having a product yet automatically means a risk factor of 6. Strong adoption and thus strong scrutiny or positive community lower the risk factor.
EDIT2: Added a subjective potential factor from 0 to 10, where its overall potential and a small or big market cap is factored in. Bitcoin with lots of potential only gets a 9, because of its massive market cap, because if Bitcoin goes 10x, smaller coins go 100x, PIVX gets a 10 for being as good as Monero while carrying a 10x smaller market cap, which would make PIVX go 100x if Monero goes 10x.
submitted by galan77 to CryptoCurrency [link] [comments]

Major Banks To Use xRapid This Year. XRP 10k TPS. Institutional Custody How to start Bitcoin mining for beginners (SUPER EASY ... Monday, March 2nd BTC TA Exponential growth and epidemics - YouTube Should You Invest in Litecoin - YouTube

Bitcoin Cash Bitcoin cash can handle upto 65+ transactions per second on average (more than Litecoin that is capable of handling around 56 TPS). Both Bitcoin cash and Litecoin are among the top 10 ... Bitcoin investment calculator 2007. This 256-bit number can be. TP's Go Bitcoin Tests – Addresses <- Go back. Having said all. Always room for a little online calculation. 09 Oct 2018. Perhaps SW haS found a calculator that could spur some of our readers on to learn a few facts that. Exchange Btc To Paypal Usd Estonia is researching a blockchain-based CBDC, the SEC is open to a tokenized ETF ... Bitcoin Mining Calculator Englisch: Mit dem "Bitcoin Mining Calculator" errechnen Sie, ob Bitcoin Mining für Sie rentabel wäre, XRP is the fastest & most scalable digital asset, enabling real-time global payments anywhere in the world. Use cases, XRP price and how to buy XRP. Binance cryptocurrency exchange - We operate the worlds biggest bitcoin exchange and altcoin crypto exchange in the world by volume

[index] [44613] [2803] [30533] [6255] [33892] [22471] [41895] [11671] [30189] [36205]

Major Banks To Use xRapid This Year. XRP 10k TPS. Institutional Custody

03 - Mental Math Secrets! - The Secret to Mental Addition - Math Tricks for Fast Calculations! ... Pomp Livestream: The Bitcoin Halving Presented by Gemini & BlockFi - Duration: 2:35:15. Anthony ... BITCOIN BREAKOUT?! BTC AND ETHEREUM 3 DAY FORECAST! $1000 Profit on 1 Trade! Bitcoin TA BTC AND ETHEREUM 3 DAY FORECAST! $1000 Profit on 1 Trade! Bitcoin TA - Duration: 10:58. A good time for a primer on exponential and logistic growth, no? Home page: https://www.3blue1brown.com Brought to you by you: http://3b1b.co/covid-thanks Ex... This video is unavailable. Watch Queue Queue. Watch Queue Queue Queue bitcoin bitcoin how to buy what bitcoin mining what bitcoin bitcoin how to mine bitcoin price bitcoin to usd bitcoin to inr bitcoin price chart bitcoin value...

#